Skip to main content

A Brief Survey of Sim2Real Methods for Robot Learning

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2022)

Abstract

Simulation has been crucial for robotics research development almost from the beginning of its existence. While simulation has been widely used for education, testing, and prototyping, only very recently the robotics community has attempted transferring behaviors learned in simulation to the real world (this process is usually referred to as Sim2Real). Those attempts have opened-up a novel research direction that has produced some exciting results that were previously thought impossible to achieve. In this paper, we attempt to give a quick overview of the most promising Simulation-To-Reality (Sim2Real) methods, results and directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajay, A., et al.: Combining physical simulators and object-based networks for control. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3217–3223. IEEE (2019)

    Google Scholar 

  2. Akkaya, I., et al.: Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113 (2019)

  3. Alghonaim, R., Johns, E.: Benchmarking domain randomisation for visual sim-to-real transfer. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 12802–12808. IEEE (2021)

    Google Scholar 

  4. Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: Conference on Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  5. Bousmalis, K., et al.: Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4243–4250. IEEE (2018)

    Google Scholar 

  6. Chatzilygeroudis, K., Mouret, J.B.: Using parameterized black-box priors to scale up model-based policy search for robotics. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5121–5128. IEEE (2018)

    Google Scholar 

  7. Chatzilygeroudis, K., Rama, R., Kaushik, R., Goepp, D., Vassiliades, V., Mouret, J.B.: Black-box data-efficient policy search for robotics. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 51–58. IEEE (2017)

    Google Scholar 

  8. Chatzilygeroudis, K., Vassiliades, V., Mouret, J.B.: Reset-free trial-and-error learning for robot damage recovery. Robot. Autonom. Syst. 100, 236–250 (2018)

    Article  Google Scholar 

  9. Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S., Mouret, J.B.: A survey on policy search algorithms for learning robot controllers in a handful of trials. IEEE Trans. Robot. 36(2), 328–347 (2019)

    Article  Google Scholar 

  10. Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., Fox, D.: Closing the sim-to-real loop: Adapting simulation randomization with real world experience. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8973–8979. IEEE (2019)

    Google Scholar 

  11. Gangapurwala, S., Geisert, M., Orsolino, R., Fallon, M., Havoutis, I.: Rloc: Terrain-aware legged locomotion using reinforcement learning and optimal control. arXiv preprint arXiv:2012.03094 (2020)

  12. Gupta, A., Kumar, V., Lynch, C., Levine, S., Hausman, K.: Relay policy learning: solving long horizon tasks via imitation and reinforcement learning. In: Conference on Robot Learning (CoRL) (2019)

    Google Scholar 

  13. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286 (2017)

  14. Ho, J., Ermon, S.: Generative adversarial imitation learning. Conf. Neural Inf. Process. Syst. (NeurIPS) 29, 4565–4573 (2016)

    Google Scholar 

  15. Isermann, R.: Fault-Diagnosis Systems: An Introduction From Fault Detection to Fault tolerance. Springer Science & Business Media, Cham (2005)

    Google Scholar 

  16. James, S., Davison, A.J., Johns, E.: Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task. In: Conference on Robot Learning, pp. 334–343. PMLR (2017)

    Google Scholar 

  17. James, S., et al.: Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637 (2019)

    Google Scholar 

  18. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5(47), eabc5986 (2020)

    Google Scholar 

  19. Lee, T.E., et al.: Camera-to-robot pose estimation from a single image. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9426–9432. IEEE (2020)

    Google Scholar 

  20. Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot.4(26), eaau4984 (2019)

    Google Scholar 

  21. Mouret, J.B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1121–1124 (2017)

    Google Scholar 

  22. Muratore, F., Treede, F., Gienger, M., Peters, J.: Domain randomization for simulation-based policy optimization with transferability assessment. In: Conference on Robot Learning, pp. 700–713. PMLR (2018)

    Google Scholar 

  23. Ota, K., Jha, D.K., Romeres, D., van Baar, J., Smith, K.A., Semitsu, T., Oiki, T., Sullivan, A., Nikovski, D., Tenenbaum, J.B.: Data-efficient learning for complex and real-time physical problem solving using augmented simulation. IEEE Robot. Autom. Lett. 6(2), 4241–4248 (2021)

    Article  Google Scholar 

  24. Rajeswaran, A., Ghotra, S., Ravindran, B., Levine, S.: Epopt: Learning robust neural network policies using model ensembles. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  25. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)

    Book  Google Scholar 

  26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, London (2018)

    MATH  Google Scholar 

  27. Tanwani, A.K.: Domain invariant representation learning for sim-to-real transfer. In: Conference on Robot Learning (2020)

    Google Scholar 

  28. Zhang, F., Leitner, J., Ge, Z., Milford, M., Corke, P.: Adversarial discriminative sim-to-real transfer of visuo-motor policies. Int. J. Robot. Res. 38(10–11), 1229–1245 (2019)

    Article  Google Scholar 

  29. Zhao, W., Queralta, J.P., Westerlund, T.: Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737–744. IEEE (2020)

    Google Scholar 

  30. Zhu, Y., et al.: Reinforcement and imitation learning for diverse visuomotor skills. In: Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania, June 2018. https://doi.org/10.15607/RSS.2018.XIV.009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Hatzilygeroudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimitropoulos, K., Hatzilygeroudis, I., Chatzilygeroudis, K. (2022). A Brief Survey of Sim2Real Methods for Robot Learning. In: Müller, A., Brandstötter, M. (eds) Advances in Service and Industrial Robotics. RAAD 2022. Mechanisms and Machine Science, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-031-04870-8_16

Download citation

Publish with us

Policies and ethics