Skip to main content

Long-Short Term Memory Model with Univariate Input for Forecasting Individual Household Electricity Consumption

  • Conference paper
  • First Online:
The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022) (AMLTA 2022)

Abstract

Power load forecasting is becoming the key role in nowadays power distribution networks to understand the behavior of the electrical power systems where end users can predict the future trends of electricity usage and hence manage their residential appliances to reduce high electrical bills. Some researchers used traditional methods that cannot handle the problem of large-scale nonlinear time series data. The main objective of this paper is to conduct various optimized deep learning models for power load forecasting and presents the best performing model with high accuracy and the lowest possible Mean-Square Error by fine-tuning the parameters to achieve the best possible configurations of the model. Using hybrid Recurrent Neural Network techniques, optimal results have been achieved. The research was conducted on Long-short term memory, Long-short term memory encoder-decoder, Convolutional Neural Network Long-short term memory, Gated Recurrent Units, Convolutional Long-short term memory, and Bidirectional Long-short term memory. The training process was conducted using Google Colaboratory and the results showed that Convolutional Long-short term memory has the lowest Root-Mean Square Error among the 6 Long-short term memory networks time series forecasting models. The prediction plot of prediction and real values against epochs are almost inline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, J., Cheng, Y., Zhou, Q., Zhang, J., Zhang, X., Li, G.: Power load forecasting using BiLSTM-attention. IOP Conf. Ser. Earth Environ. Sci. 440(3), 032115 (2020). https://doi.org/10.1088/1755-1315/440/3/032115

  2. Turatsinze, E., et al.: Study of advanced power load management based on the low-cost internet of things and synchronous photovoltaic systems. In: Hassanien, A.E., Slowik, A., Snášel, V., El-Deeb, H., Tolba, F.M. (eds.) AISI 2020. AISC, vol. 1261, pp. 548–557. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58669-0_49

    Chapter  Google Scholar 

  3. Ullah, F.U.M., Ullah, A., Haq, I.U., Rho, S., Baik, S.W.: Short-term prediction of residential power energy consumption via CNN and multi-layer Bi-directional LSTM networks. IEEE Access 8, 123369–123380 (2020). https://doi.org/10.1109/ACCESS.2019.2963045

    Article  Google Scholar 

  4. Chung, H., Shin, K.S.: Genetic algorithm-optimized long short-term memory network for stock market prediction. Sustainability 10(10), 3765 (2018). https://doi.org/10.3390/su10103765

  5. Lv, L., Kong, W., Qi, J., Zhang, J.: An improved long short-term memory neural network for stock forecast. MATEC Web Conf. 232, 01024 (2018). https://doi.org/10.1051/matecconf/201823201024

  6. Rahman, S., Alam, G.R.: Deep learning based ensemble method for household energy demand forecasting of smart home, pp. 18–20 (2019)

    Google Scholar 

  7. Pan, C., Tan, J.: Very short-term solar generation forecasting based on LSTM with temporal attention mechanism, pp. 267–271 (2019)

    Google Scholar 

  8. Kim, T.Y., Cho, S.B.: Predicting residential energy consumption using CNN-LSTM neural networks. Energy 182, 72–81 (2019). https://doi.org/10.1016/j.energy.2019.05.230

    Article  Google Scholar 

  9. Yan, K., Wang, X., Du, Y., Jin, N., Huang, H., Zhou, H.: Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies 11(11), 1–15 (2018). https://doi.org/10.3390/en11113089

    Article  Google Scholar 

  10. Peña-Guzmán, C., Rey, J.: Forecasting residential electric power consumption for Bogotá Colombia using regression models. Energy Rep. 6, 561–566 (2020). https://doi.org/10.1016/j.egyr.2019.09.026

    Article  Google Scholar 

  11. Elsworth, S., Güttel, S.: Time series forecasting using LSTM networks: a symbolic approach. arXiv, pp. 1–12 (2020)

    Google Scholar 

  12. Islam, M.R., Al Mamun, A., Sohel, M., Hossain, M.L., Uddin, M.M.: LSTM-based electrical load forecasting for Chattogram city of Bangladesh. In: 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), ESCI 2020, pp. 188–192 (2020). https://doi.org/10.1109/ESCI48226.2020.9167536

  13. Kalimoldayev, M., Drozdenko, A., Koplyk, I., Marinich, T., Abdildayeva, A., Zhukabayeva, T.: Analysis of modern approaches for the prediction of electric energy consumption. Open Eng. 10(1), 350–361 (2020). https://doi.org/10.1515/eng-2020-0028

    Article  Google Scholar 

  14. Lim, B., Zohren, S.: Time series forecasting with deep learning: a survey. arXiv (2020). https://doi.org/10.1098/rsta.2020.0209

  15. Dairi, A., Harrou, F., Sun, Y., Khadraoui, S.: Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach. Appl. Sci. 10(23), 1–20 (2020). https://doi.org/10.3390/app10238400

    Article  Google Scholar 

  16. Yan, K., Li, W., Ji, Z., Qi, M., Du, Y.: A hybrid LSTM neural network for energy consumption forecasting of individual households. IEEE Access 7, 157633–157642 (2019). https://doi.org/10.1109/ACCESS.2019.2949065

    Article  Google Scholar 

  17. Cnn, U., Le, T., Vo, M.T., Vo, B., Hwang, E., Rho, S.: Applied sciences improving electric energy consumption prediction

    Google Scholar 

  18. Sajjad, M., et al.: A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 8, 143759–143768 (2020). https://doi.org/10.1109/ACCESS.2020.3009537

    Article  Google Scholar 

  19. Ouyang, T., He, Y., Li, H., Sun, Z., Baek, S.: A deep learning framework for short-term power load forecasting. arXiv, pp. 1–8 (2017)

    Google Scholar 

  20. Chang, K.C., Chu, K.C., Wang, H.C., Lin, Y.C., Pan, J.S.: Agent-based middleware framework using distributed CPS for improving resource utilization in smart city. Future Gener. Comput. Syst. 108, 445–453 (2020). https://doi.org/10.1016/j.future.2020.03.006

    Article  Google Scholar 

  21. Chang, K.C., Chu, K.C., Wang, H.C., Lin, Y.C., Pan, J.S.: Energy saving technology of 5G base station based on internet of things collaborative control. IEEE Access 8(1), 32935–32946 (2020). https://doi.org/10.1109/ACCESS.2020.2973648

    Article  Google Scholar 

  22. Jiang, L., Hu, G.: Day-ahead price forecasting for electricity market using long-short term memory recurrent neural network. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 949–954 (2018). https://doi.org/10.1109/ICARCV.2018.8581235

  23. Chu, K.C., Horng, D.J., Chang, K.C.: Numerical optimization of the energy consumption for wireless sensor networks based on an improved Ant Colony Algorithm. IEEE Access 7(1), 105562–105571 (2019). https://doi.org/10.1109/ACCESS.2019.2930408

    Article  Google Scholar 

  24. Chandramitasari, W., Kurniawan, B., Fujimura, S.: Building deep neural network model for short term electricity consumption forecasting. In: 2018 International Symposium on Advanced Intelligent Informatics (SAIN), pp. 43–48 (2019). https://doi.org/10.1109/SAIN.2018.8673340

  25. Taylor, J.W., McSharry, P.E.: Short-term load forecasting methods: an evaluation based on European data. IEEE Trans. Power Syst. 22(4), 2213–2219 (2007). https://doi.org/10.1109/TPWRS.2007.907583

    Article  Google Scholar 

  26. Babich, L., Svalov, D., Smirnov, A., Babich, M.: Industrial power consumption forecasting methods comparison. In: 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), vol. 2, pp. 307–309 (2019). https://doi.org/10.1109/USBEREIT.2019.8736640

  27. Jiang, Q., Li, M.: Electricity power load forecast via long short-term memory recurrent neural networks, pp. 5–8 (2018). https://doi.org/10.1109/ICNISC.2018.00060

  28. Sriwijaya, U., et al.: Peak load forecasting based on long short term memory, pp. 2019–2022 (2019)

    Google Scholar 

  29. Liu, P., Mo, R., Yang, J., Zhang, Y., Fu, X., Lan, P.: Forecasting using deep hybrid neural networks, pp. 159–164 (2019)

    Google Scholar 

  30. Farsi, B., Amayri, M., Bouguila, N., Eicker, U.: On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach. IEEE Access 9, 31191–31212 (2021). https://doi.org/10.1109/ACCESS.2021.3060290

    Article  Google Scholar 

  31. Häring, T., Ahmadiahangar, R., Rosin, A., Korõtko, T.: Accuracy analysis of selected time series and machine learning methods for smart cities based on Estonian electricity consumption forecast, pp. 425–428 (2020)

    Google Scholar 

  32. Wang, Q., Lin, R., Zhao, Y., Zou, H.: Electricity consumption forecast based on empirical mode decomposition and gated recurrent unit hybrid model, pp. 1670–1674 (2020)

    Google Scholar 

  33. Gong, G., An, X., Mahato, N.K., Sun, S., Chen, S., Wen, Y.: Research on short-term load prediction based on Seq2seq model. Energies 12(16), 1–18 (2019). https://doi.org/10.3390/en12163199

    Article  Google Scholar 

  34. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  35. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 4, 3104–3112 (2014)

    Google Scholar 

  36. Khan, Z.A., Hussain, T., Ullah, A., Rho, S., Lee, M., Baik, S.W.: Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework. Sensors (Switzerland) 20(5), 1–16 (2020). https://doi.org/10.3390/s20051399

    Article  Google Scholar 

  37. Khan, Z.A., Ullah, A., Ullah, W., Rho, S., Lee, M., Baik, S.W.: Electrical energy prediction in residential buildings for short-term horizons using hybrid deep learning strategy. Appl. Sci. 10(23), 1–12 (2020). https://doi.org/10.3390/app10238634

    Article  Google Scholar 

  38. Ribeiro, A.M.N.C., Do Carmo, P.R.X., Rodrigues, I.R., Sadok, D., Lynn, T., Endo, P.T.: Short-term firm-level energy-consumption forecasting for energy-intensive manufacturing: a comparison of machine learning and deep learning models. Algorithms 13(11), 1–19 (2020). https://doi.org/10.3390/a13110274

  39. Wu, L., Kong, C., Hao, X., Chen, W.: A short-term load forecasting method based on GRU-CNN hybrid neural network model. Math. Probl. Eng. 2020, 1428104 (2020). https://doi.org/10.1155/2020/1428104

    Article  Google Scholar 

  40. Wang, Y., Huang, M., Zhao, L., Zhu, X.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 (2016). https://doi.org/10.18653/v1/d16-1058

  41. Shi, X., Chen, Z., Wang, H.: Convolutional LSTM network: a machine learning approach for precipitation now casting. arXiv: 1506.04214v2 [cs. CV], pp. 1–12, 19 September 2015

    Google Scholar 

  42. Chang, K.C., Chu, K.C., Wang, H.C., Lin, Y.C., Pan, J.S.: Energy saving technology of 5G base station based on internet of things collaborative control. IEEE Access 8, 32935–32946 (2020)

    Article  Google Scholar 

  43. Chu, K.C., Chang, K.C., Wang, H.C., Lin, Y.C., Hsu, T.L.: Field-programmable gate array-based hardware design of optical fiber transducer integrated platform. J. Nanoelectron. Optoelectron. 15(5), 663–671 (2020)

    Article  Google Scholar 

  44. Chu, K.C., Horng, D.J., Chang, K.C.: Numerical optimization of the energy consumption for wireless sensor networks based on an improved ant colony algorithm. IEEE Access 7, 105562–105571 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuo-Chi Chang or Elias Turatsinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, KC., Turatsinze, E., Zheng, J., Chang, FH., Wang, HC., Amesimenu, G.D.K. (2022). Long-Short Term Memory Model with Univariate Input for Forecasting Individual Household Electricity Consumption. In: Hassanien, A.E., Rizk, R.Y., Snášel, V., Abdel-Kader, R.F. (eds) The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022). AMLTA 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-031-03918-8_12

Download citation

Publish with us

Policies and ethics