Skip to main content

Digital Twin for Production Systems: A Literature Perspective

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1034))

Abstract

Digital Twin is one of the keys enabling technologies of the fourth industrial revolution. Alongside with the cyber-physical systems it is expected to widen the perspectives of smart manufacturing development and for production systems in particular. For these systems on-going state monitoring, simulation and prediction of manufacturing operations are crucial to improve the production efficiency and flexibility. Moreover, through the principles of system engineering, Digital Twin establishes interconnection and interoperability between cyber and physical environments allowing humans to act confidently based on accurately analysed data and verified simulation models. In order to design and implement Digital Twin the architecture and main components must be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vijayaraghavan, V., Rian Leevinson, J.: Internet of Things applications and use cases in the era of industry 4.0. (2019)

    Google Scholar 

  2. Errandonea, I., Beltrán, S., Arrizabalaga, S.: Digital Twin for maintenance: a literature review. Comput. Ind. 123 (2020). https://doi.org/10.1016/j.compind.2020.103316

  3. Semeraro, C., et al.: Digital twin paradigm: a systematic literature review To cite this version : HAL Id : hal-03218786 Digital Twin paradigm : a systematic literature review (2021)

    Google Scholar 

  4. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  5. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Annals Manuf. Technol. 66(1), 141–144 (2017). https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  6. Verboven, P., Defraeye, T., Datta, A.K., Nicolai, B.: Digital twins of food process operations: the next step for food process models? Curr. Opin. Food Sci. 35, 79–87 (2020). https://doi.org/10.1016/j.cofs.2020.03.002

    Article  Google Scholar 

  7. Ashtari Talkhestani, B., et al.: An architecture of an intelligent digital twin in a cyber-physical production system. Automatisierungstechnik 67(9), 762–782 (2019). https://doi.org/10.1515/auto-2019-0039

    Article  Google Scholar 

  8. Shao, G., et al.: Use case scenarios for digital twin implementation based on ISO 23247. J. Manuf. Syst. 58(May), 30 (2021). https://doi.org/10.1016/j.jmsy.2020.02.003%0A10.6028/NIST.AMS.400-2

    Article  Google Scholar 

  9. Julien, N., Martin, E.: How to characterize a digital twin: a usage-driven classification. IFAC-PapersOnLine 54(1), 894–899 (2021)

    Article  Google Scholar 

  10. Tao, F., Qi, Q., Wang, L., Nee, A.Y.C.: Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering 5(4), 653–661 (2019). https://doi.org/10.1016/j.eng.2019.01.014

  11. Alcácer, V., Cruz-Machado, V.: Scanning the industry 4.0: a literature review on technologies for manufacturing systems. Eng. Sci. Technol. Int. J. 22(3), 899–919 (2019). https://doi.org/10.1016/j.jestch.2019.01.006

    Article  Google Scholar 

  12. Kunath, M., Winkler, H.: Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP 72, 225–231 (2018). https://doi.org/10.1016/j.procir.2018.03.192

    Article  Google Scholar 

  13. Park, H., Easwaran, A., Andalam S.: Challenges in digital twin development for cyber-physical production systems. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinf.) 11615, 28–48 (2019). https://doi.org/10.1007/978-3-030-23703-5_2

  14. Lu, Y., Liu, C., Wang, K.I.K., Huang, H., Xu, X.: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61, 101837 (2020). https://doi.org/10.1016/j.rcim.2019.101837

    Article  Google Scholar 

  15. Zhang, X., Zhu, W.: Application framework of digital twin-driven product smart manufacturing system: A case study of aeroengine blade manufacturing. Int. J. Adv. Robot. Syst. 16(5), 1–16 (2019). https://doi.org/10.1177/1729881419880663

    Article  Google Scholar 

  16. Vachálek, J., Šišmišová, D., Vašek, P., Fit’ka, I., Slovák, J., Šimovec, M.: Design and implementation of universal cyber-physical model for testing logistic control algorithms of production line’s digital twin by using color sensor. Sensors 21(5), 1–12 (2021) https://doi.org/10.3390/s21051842

  17. Zhang, H., Liu, Q., Chen, X., Zhang, D., Leng, J.: A Digital Twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 5(October), 26901–26911 (2017). https://doi.org/10.1109/ACCESS.2017.2766453

    Article  Google Scholar 

  18. Ding, K., Chan, F.T.S., Zhang, X., Zhou, G., Zhang, F.: Defining a Digital Twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. Int. J. Prod. Res. 57(20), 6315–6334 (2019). https://doi.org/10.1080/00207543.2019.1566661

    Article  Google Scholar 

  19. Melesse, T.Y., Di Pasquale, V., Riemma, S.: Digital twin models in industrial operations: a systematic literature review. Procedia Manuf. 42, 267–272 (2020). https://doi.org/10.1016/j.promfg.2020.02.084

    Article  Google Scholar 

  20. Nyffenegger, F., Ríos, J., Rivest, L., Bouras, A.: Product lifecycle management enabling smart X 594(6) (2020)

    Google Scholar 

  21. Schützer, K., de Andrade Bertazzi, J., Sallati, C., Anderl, R., Zancul, E.: Contribution to the development of a Digital Twin based on product lifecycle to support the manufacturing process. Procedia CIRP 84, 82–87 (2019). https://doi.org/10.1016/j.procir.2019.03.212

    Article  Google Scholar 

  22. Toche, B., McSorley, G., Pellerin, R., Fortin, C.: A framework to support collaboration during prototyping and testing. Int. J. Prod. Lifecycle Manag. 10(4), 348–374 (2017). https://doi.org/10.1504/IJPLM.2017.090329

    Article  Google Scholar 

  23. Boje, C., Guerriero, A., Kubicki, S., Rezgui, Y.: Towards a semantic construction digital twin: directions for future research. Autom. Constr. 114, 103179 (2020). https://doi.org/10.1016/j.autcon.2020.103179

    Article  Google Scholar 

  24. Liu, Z., Chen, W., Zhang, C., Yang, C., Chu, H.: Data super-network fault prediction model and maintenance strategy for mechanical product based on Digital Twin. IEEE Access 7, 177284–177296 (2019). https://doi.org/10.1109/ACCESS.2019.2957202

    Article  Google Scholar 

  25. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017). https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  26. Pirola, F., Boucher, X., Wiesner, S., Pezzotta, G.: Digital technologies in product-service systems: a literature review and a research agenda. Comput. Ind. 123, 103301 (2020). https://doi.org/10.1016/j.compind.2020.103301

    Article  Google Scholar 

  27. Ríos, J., Hernández, J.C., Oliva, M., Mas, F.: Product avatar as digital counterpart of a physical individual product: literature review and implications in an aircraft. Adv. Transdiscipl. Eng. 2(6), 657–666 (2015). https://doi.org/10.3233/978-1-61499-544-9-657

    Article  Google Scholar 

  28. Barthelmey, A., Lee, E., Hana, R., Deuse, J.: Dynamic digital twin for predictive maintenance in flexible production systems. In: IECON Proceeding of Industrial Electronical Conference, vol. 2019-Octob, pp. 4209–4214 (2019). https://doi.org/10.1109/IECON.2019.8927397

  29. Uhlemann, T.H.-J., Lehmann, C., Steinhilper, R.: The Digital Twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61, 335–340 (2017). https://doi.org/10.1016/J.PROCIR.2016.11.152

    Article  Google Scholar 

  30. Meyer, T., Munske, S., Weyer, S., Brandstetter, V., Wehrstedt, J.C., Keinan, M.: Classification of application scenarios for a virtual commissioning of CPS-based production plants into the reference architecture RAMI 4.0. Autom 773–784, 2018 (2018). https://doi.org/10.51202/9783181023303-773

    Article  Google Scholar 

  31. Lechler, T., Fischer, E., Metzner, M., Mayr, A., Franke, J.: Virtual commissioning—scientific review and exploratory use cases in advanced production systems. Procedia CIRP 81(June), 1125–1130 (2019). https://doi.org/10.1016/j.procir.2019.03.278

    Article  Google Scholar 

  32. Wang, K.J., Lee, Y.H., Angelica, S.: Digital twin design for real-time monitoring–a case study of die cutting machine. Int. J. Prod. Res. (2020). https://doi.org/10.1080/00207543.2020.1817999

    Article  Google Scholar 

  33. Bellalouna, F.: Case study for design optimization using the digital twin approach. Procedia CIRP 100, 595–600 (2021). https://doi.org/10.1016/j.procir.2021.05.129

    Article  Google Scholar 

  34. Redelinghuys, A.J.H., Basson, A.H., Kruger, K.: A six-layer architecture for the digital twin: a manufacturing case study implementation. J. Intell. Manuf. 31(6), 1383–1402 (2020). https://doi.org/10.1007/s10845-019-01516-6

    Article  Google Scholar 

  35. Cupek, R., Drewniak, M., Ziebinski, A., Fojcik, M.: Digital Twins’ for highly customized electronic devices-case study on a rework operation. IEEE Access 7, 164127–164143 (2019). https://doi.org/10.1109/ACCESS.2019.2950955

    Article  Google Scholar 

  36. Pires, F., Souza, M., Ahmad, B., Leitão, P.: Decision support based on digital twin simulation: a case study. Stud. Comput. Intell. 952, 99–110 (2021). https://doi.org/10.1007/978-3-030-69373-2_6

    Article  Google Scholar 

  37. Ward, R., Soulatiantork, P., Finneran, S., Hughes, R., Tiwari, A.: Real-time vision-based multiple object tracking of a production process: industrial digital twin case study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2021). https://doi.org/10.1177/09544054211002464

  38. Cheng, J., Zhang, H., Tao, F., Juang, C.F.: DT-II: digital twin enhanced industrial internet reference framework towards smart manufacturing. Robot. Comput. Integr. Manuf. 62(January 2019), 101881 (2020). https://doi.org/10.1016/j.rcim.2019.101881

  39. Valckenaers, P.: Perspective on holonic manufacturing systems: PROSA becomes ARTI. Comput. Ind. 120, 103226 (2020). https://doi.org/10.1016/j.compind.2020.103226

    Article  Google Scholar 

  40. ISO 23247-2:2021 Automation systems and integration—Digital twin framework for manufacturing—Part 2: reference architecture, https://www.iso.org/standard/78743.html (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Pystina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pystina, K., Sekhari, A., Gzara, L., Cheutet, V. (2022). Digital Twin for Production Systems: A Literature Perspective. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 1034. Springer, Cham. https://doi.org/10.1007/978-3-030-99108-1_8

Download citation

Publish with us

Policies and ethics