Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1038))

  • 515 Accesses

Abstract

Timetabling problem is one of the most difficult operational tasks and an important step in raising the industrial productivity, capability, and capacity. Such tasks are usually tackled using metaheuristics techniques that provide an intelligent way of suggesting solutions or decision making. Swarm intelligence techniques including ant systems have proved to be effective examples. Different recent experiments showed that ant system algorithms are reliable for timetabling in many discrete-events applications such as educational and personnel timetabling, job and machine scheduling, and other similar aspects. However, obtaining an optimal solution is extremely difficult but obtaining a near-optimal solution using metaheuristic algorithms is possible. This research paper seeks the enhancement of ant system algorithm for an efficient timetabling task. This algorithm aims to generate feasible and high-quality timetables via minimizing constraints violations in a reasonable execution time. This enhanced version is a hybrid elitist-ant system metaheuristic which is tested on a round-robin tournament known as the international timetabling competition-2021 dedicated for sports timetabling. The competition includes several hard and soft constraints to be satisfied to build a feasible high-quality timetable. It consists of three categories of complexities or difficulties, namely early, test and middle instances. Results showed that the proposed elitist-ant system metaheuristic has obtained competitive timetables for almost all the instances in terms of feasibility and quality. The feasibility is measured by minimizing the violation of hard constraints to zero, while minimizing soft constraints towards zero violations as much as possible. The performance of the elitist-ant system is evaluated by the consumed computational time to produce a timetable, consistency, and robustness. The elitist-ant system showed a robust and consistent performance in producing a diversity of timetables in a reasonable computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sportscheduling.ugent.be/ITC2021/index.php.

  2. 2.

    https://www.sportscheduling.ugent.be/ITC2021/.

  3. 3.

    https://www.sportscheduling.ugent.be/ITC2021/instances.php.

  4. 4.

    https://www.sportscheduling.ugent.be/ITC2021/instances.php.

  5. 5.

    Detailed formulations are available in: https://www.sportscheduling.ugent.be/RobinX/threeField.php.

  6. 6.

    https://www.sportscheduling.ugent.be/RobinX/index.php.

References

  1. M. Dorigo, V. Maniezzo, A. Colorini, Positive feed-back as a search strategy. Tech. Rept. 91-016 (Dipartmento di Elettronica, Politecnico di Milano, Italy, 1991)

    Google Scholar 

  2. G. Jaradat, M. Ayob, An elitist-ant system for solving the post-enrolment course timetabling problem, in The 2010 International Conference on Database Theory and Application (DTA 2010) (2010), pp. 167–176

    Google Scholar 

  3. G. Jaradat, M. Ayob, I. Almarashdeh, The effect of elite pool in hybrid population-based meta-heuristics for solving combinatorial optimization problems. Appl. Soft Comput. 44, 45–56 (2016). https://doi.org/10.1016/j.asoc.2016.01.002

    Article  Google Scholar 

  4. D. Van Bulck, D. Goossens, J. Beliën, M. Davari, International timetabling competition 2021: sports timetabling. itc2021.ugent.be

    Google Scholar 

  5. M.A. Trick, Integer and constraint programming approaches for round robin tournament scheduling (2004)

    Google Scholar 

  6. A. Aggoun, A. Vazacopoulos, Solving sports scheduling and timetabling problems with constraint programming, in Economics, Management and Optimization in Sports, ed. S. Butenko et al. (Springer-Verlag, Berlin, Heidelberg, 2004)

    Google Scholar 

  7. M.A. Trick, A schedule-then-break approach to sports timetabling, in PATAT 2000. LNCS, vol. 2079, ed. E. Burke, W. Erben (Springer, Heidelberg 2001), pp. 242–253

    Google Scholar 

  8. J. Schönberger, D.C. Mattfeld, H. Kopfer, Memetic algorithm timetabling for non-commercial sport leagues. Eur. J. Oper. Res. 153(1), 102–116 (2004). ISSN 0377-2217. https://doi.org/10.1016/S0377-2217(03)00102-4

  9. A. Duarte, C.C. Ribeiro, S. Urrutia, A hybrid ILS heuristic to the referee assignment problem with an embedded MIP strategy. Lect. Notes Comput. Sci. 4771, 82–95 (2007)

    Article  Google Scholar 

  10. G. Durán, Sports scheduling and other topics in sports analytics: a survey with special reference to Latin America. TOP 29, 125–155 (2021). https://doi.org/10.1007/s11750-020-00576-9

  11. M. Grobner, P. Wilke, S. Buttcher, A standard framework for timetabling problems, in PATAT 2002, LNCS 2740, ed. E. Burke, P. De Causmaecker (2003), pp. 24–38

    Google Scholar 

  12. G. Kendall, S. Knust, C.C. Ribeiro, S. Urrutia, Scheduling in sports: an annotated bibliography. Comput. Oper. Res. 37(1), 1–19 (2010). ISSN 0305-0548

    Google Scholar 

  13. S. Knust, Classification of Literature on Sports Scheduling (2020), http://www2.inf.uos.de/knust/sportssched/sportlit_class/. Accessed 25 March 2021

  14. D.R. Goossens, F.C.R. Spieksma, Soccer schedules in Europe: an overview. J. Sched. 15, 641–651 (2011)

    Article  Google Scholar 

  15. G.L. Nemhauser, M.A. Trick, Scheduling a major college basketball conference. Oper. Res. 46, 1–8 (1998)

    Article  Google Scholar 

  16. D. Van Bulck, D. Goossens, J. Schönberger, M. Davari, ITC2021—Sports Timetabling Problem Description and File Format (2020), https://www.sportscheduling.ugent.be/ITC2021/images/OrganizationITC2021_V7.pdf

  17. D. Van Bulck, D. Goossens, J. Schönberger, M. Guajardo, An instance data repository for the round-robin sports timetabling problem. Manag. Labour Stud. 45(2), 184–200 (2020). https://doi.org/10.1177/0258042X20912108

  18. D. Van Bulck, D. Goossens, J. Schönberger, M. Guajardo, RobinX: a three-field classification and unified data format for round-robin sports timetabling. Eur. J. Oper. Res. 280, 568–580 (2019)

    Article  MathSciNet  Google Scholar 

  19. T.A.M. Toffolo, J. Christiaens, F.C.R. Spieksma, G.V. Berghe, The sport teams grouping problem. Ann. Oper. Res. 275, 223–243 (2019)

    Article  MathSciNet  Google Scholar 

  20. R. Linfati, G. Gatica, J.W. Escobar, A flexible mathematical model for the planning and designing of a sporting fixture by considering the assignment of referees. Int. J. Ind. Eng. Comput. 10(2), 281–294 (2019). https://doi.org/10.5267/j.ijiec.2018.6.004

    Article  Google Scholar 

  21. T. Wauters, S. Van Malderen, Decomposition and local search-based methods for the traveling umpire problem. Eur. J. Oper. Res. 238(3), (2014)

    Google Scholar 

  22. M. Triska, N. Musliu, An improved SAT formulation for the social golfer problem. Ann. Oper. Res. 194, 427–438 (2012)

    Article  MathSciNet  Google Scholar 

  23. C.C. Ribeiro, Sports scheduling: problems and applications. Int. Trans. Oper. Res. 19, 201–226 (2012). https://doi.org/10.1111/j.1475-3995.2011.00819.x

    Article  MATH  Google Scholar 

  24. M. Goerigk, S. Westphal, A combined local search and integer programming approach to the traveling tournament problem. Ann. Oper. Res. 239, 343–354 (2016)

    Article  MathSciNet  Google Scholar 

  25. M. Ayob, G. Jaradat, Hybrid ant colony systems for course timetabling problems, in 2009 2nd Conference on Data Mining and Optimization (2009), pp. 120–126. https://doi.org/10.1109/DMO.2009.5341898.

  26. H. Crauwels, D. Oudheusden, Ant Colony Optimization and Local Improvement (2003), https://www.researchgate.net/publication/228716201_Ant_colony_optimization_and_local_improvement

  27. P. Chen, G. Kendall, G.V. Berghe, An ant based hyper-heuristic for the travelling tournament problem, in 2007 IEEE Symposium on Computational Intelligence in Scheduling (2007), pp. 19–26. https://doi.org/10.1109/SCIS.2007.367665

  28. D.C. Uthus, P.J. Riddle, H.W. Guesgen, Ant colony optimization and the single round robin maximum value problem, in Ant Colony Optimization and Swarm Intelligence. ANTS 2008, ed. M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Winfield. Lecture Notes in Computer Science, vol. 5217 (Springer, Berlin, Heidelberg 2008). https://doi.org/10.1007/978-3-540-87527-7_23

  29. N. Kumyaito, P. Yupapin, K. Tamee, Planning a sports training program using adaptive particle swarm optimization with emphasis on physiological constraints. BMC Res. Notes 11, 9 (2018). https://doi.org/10.1186/s13104-017-3120-9

    Article  Google Scholar 

  30. A. Madureira, N. Sousa, I. Pereira, Swarm Intelligence for Scheduling (2011)

    Google Scholar 

  31. R.V. Rasmussen, M.A. Trick, Round robin scheduling—a survey. Eur. J. Oper. Res. 188(3), 617–636 (2007)

    Article  MathSciNet  Google Scholar 

  32. G.M. Jaradat, Hybrid elitist-ant system for a symmetric traveling salesman problem: case of Jordan. Neural Comput. Appl. 29, 565–578 (2018). https://doi.org/10.1007/s00521-016-2469-3

    Article  Google Scholar 

  33. L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A.H. Gandomi, The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021). ISSN 0045-7825. https://doi.org/10.1016/j.cma.2020.113609

  34. L. Abualigah, D. Yousri, M. Abd Elaziz, A.A. Ewees, M.A.A. Al-qaness, A.H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021). ISSN 0360-8352. https://doi.org/10.1016/j.cie.2021.107250

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghaith M. Jaradat .

Editor information

Editors and Affiliations

Appendix

Appendix

(See Figs. 3, 4, 5, 6 and 7).

Fig. 3
figure 3

Statistics and Box-Whisker Plot for 6 × 10 Datasets

Fig. 4
figure 4

Statistics and Box-Whisker Plot for 16 × 30 Datasets

Fig. 5
figure 5

Statistics and Box-Whisker Plot for 18 × 34 Datasets

Fig. 6
figure 6

Statistics and Box-Whisker Plot for 20 × 38 Datasets

Fig. 7
figure 7

Statistics and Box-Whisker Plot for all Datasets

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaradat, G.M. (2022). Elitist-Ant System Metaheuristic for ITC 2021—Sports Timetabling. In: Houssein, E.H., Abd Elaziz, M., Oliva, D., Abualigah, L. (eds) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol 1038. Springer, Cham. https://doi.org/10.1007/978-3-030-99079-4_3

Download citation

Publish with us

Policies and ethics