Skip to main content

Grid Integration of Wind Energy Using Fuzzy Logic Algorithm

  • Reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

Wind Energy Conversion System (WECS) shows nonlinearities in their output power, hence it becomes a challenge for maximizing power and integrating with grid. To ensure maximum power Fuzzy Logic control is proposed at rotor side of Permanent Magnet Synchronous generator with maximum power point algorithm, mechanical speed is controlled. Power quality is maintained well by holding unity power factor grid side using sliding mode control. Hence wind energy is integrated with the grid using these control strategies are verified using MATLAB/Simulink tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • S.D. Ahmed, F.S.M. Al-Ismail, M. Shafiullah, F.A. Al-Sulaiman, I.M. El-Amin, Grid integration challenges of wind energy: A review. IEEE Access 8, 10857–10878 (2020)

    Article  Google Scholar 

  • M. Arunmozhi, S. Senthilmurugan, V. Ganesh, Design and operation strategies for grid connected smart home, in Handbook of Smart Energy Systems, ed. by M. Fathi, E. Zio, P. M. Pardalos, (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-72322-4-78-1

    Chapter  Google Scholar 

  • Y. Erramia, M. Ouassaid, M. Maaroufia, Control of a PMSG based wind energy generation system for power maximization and grid fault conditions. Energy Procedia 42, 220–229 (2013)

    Article  Google Scholar 

  • V. Ganesh, S. Senthilmurugan, R. Ananthanarayanan, S.S. Srinivasan, N.R.S. Lakshanasri, Integration strategies of renewable energy sources in a conventional community, in Handbook of Smart Energy Systems, ed. by M. Fathi, E. Zio, P. M. Pardalos, (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-72322-4-120-1

    Chapter  Google Scholar 

  • K. Kerrouche, A. Mezouar, K. Belgacem, Decoupled control of doubly fed induction generator by vector control for wind energy conversion system. Energy Procedia 42, 239–248 (2013)

    Article  Google Scholar 

  • N.Z. Laabidine, A. Errarhout, C. El Bakkali, K. Mohammed, B. Bossoufi, Sliding mode control design of wind power generation system based on permanent magnet synchronous generator. Int. J. Power Electron. Drive Syst. 12(1), 393–403 (2021)

    Google Scholar 

  • N. Phankong, S. Manmai, K. Bhumkittipich, P. Nakawiwat, Modeling of grid-connected with permanent magnet synchronous generator (PMSG) using voltage vector control. Energy Procedia 34, 262–272 (2013)

    Article  Google Scholar 

  • P. Rani, V.P. Arora, N.K. Sharma, Improved dynamic performance of permanent magnet synchronous generator based grid connected wind energy system. Energy Sources Part A Recover. Util. Environ. Eff., 1–20 (2022). https://doi.org/10.1080/15567036.2021.2022814

  • K.V. Shihabudheen, G.N. Pillai, S. Krishnama Raju, Neuro-fuzzy control of DFIG wind energy system with distribution network. Elect. Power Compon. Syst. 46(13), 1–16 (2019)

    Google Scholar 

  • S. Vijayalakshmi, C. Anuradha, V. Ganapathy, V. Padmajothi, Direct driven wind energy conversion system connected to load using variable frequency transformer. Int. J. Electr. Eng. Educ. 58(2), 488–500 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vijayalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anuradha, C., Vijayalakshmi, S., Ganesh, V., Ramapraba, P.S. (2023). Grid Integration of Wind Energy Using Fuzzy Logic Algorithm. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97940-9_180

Download citation

Publish with us

Policies and ethics