Skip to main content

IoT Regulated Water Quality Prediction Through Machine Learning for Smart Environments

  • Chapter
  • First Online:
Machine Learning for Smart Environments/Cities

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 121))

  • 560 Accesses

Abstract

Smart cities have been contingent on the concept of Internet of Things since the beginning, the only measurable gap is the means to achieve it. Smart cities are not limited to urban housing but are more sectarian in the suburbs and require a means to devise efficient mechanisms and systems that can support sustainable growth. Industrial suburbs are the major pollutants that are the primary focus of this research. This paper works on the data of recycled wastewater procured from industrial use, which otherwise is directly discharged into the rivers. We collect the data using IoT sensors, these sensors are responsible for obtaining information about the data, also for scrutinizing and maintaining the water quality. The data contains major features that signify and influence the water quality, these parameters are used for the calculation of the water quality index. Finally, we train and predict this quality index using 3 machine learning algorithms-Decision Tree, Random Forest, and Deep Neural Networks. The evaluation metrics consist of RMSE, MAD, MAPE, and R squared value to identify and determine the model with the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaur, E., Oza, A.: Blockchain-based multi-organization taxonomy for smart cities. SN Appl. Sci. 2, 440 (2020). https://doi.org/10.1007/s42452-020-2187-4

    Article  Google Scholar 

  2. Udokwu, C., Kormiltsyn, A., Thangalimodzi, K., Norta, A.: An exploration of blockchain enabled smart-contracts application in the enterprise (2018). https://doi.org/10.13140/rg.2.2.36464.97287

  3. Gavin, W.: Ethereum: a secure decentralised generalised transaction ledger Istanbul version. https://ethereum.github.io/yellowpaper/paper.pdf

  4. Karp, H., et al.: Nexus mutual: a peer-to-peer discretionary mutual on Ethereum blockchain. https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  6. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Moody, J.E., Hanson, S.J., Lippmann, P.R. (Eds.), Advance in neural information processing systems-4. Morgan Kauffmann Publishers, San Mateo, pp. 950–957 (1992)

    Google Scholar 

  7. Dietterich, T.G., Kong, E.B.: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms. Technical report, Department of Computer Science, Oregon State University (1995). http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.38.2702

  8. Navada, A., Ansari, A.N., Patil, S., Sonkamble, B.A.: Overview of use of decision tree algorithms in machine learning. IEEE Control Syst. Graduate Res. Colloquium 2011, 37–42 (2011). https://doi.org/10.1109/ICSGRC.2011.5991826

    Article  Google Scholar 

  9. Segal, M.R.: Machine learning benchmarks and random forest regression (2004)

    Google Scholar 

  10. Qi, Y.: Random forest for bioinformatics. In: Zhang ,C., Ma, Y. (eds.) Ensemble Machine Learning. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-9326-7_11

  11. Reis, I., et al.: Probabilistic random forest: a machine learning algorithm for noisy data sets. Astron. J. 157, 16 (2019). https://arxiv.org/abs/1811.05994

  12. Berrar, D.: Bayes’ theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Elsevier Science Publisher, Amsterdam, pp. 403–412 (2018)

    Google Scholar 

  13. Lewis, D.D., et al.: Naive (Bayes) at forty: the independence assumption in information retrieval. ECML (1998)

    Google Scholar 

  14. Nugrahaeni, R.A., Mutijarsa, K.: Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. In: 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), pp. 163–168 (2016). https://doi.org/10.1109/ISEMANTIC.2016.7873831

  15. Lee, T.R., Wood, W.T., Phrampus, B.J.: A machine learning (kNN) approach to predicting global seafloor total organic carbon. Glob. Biogeochem. Cycles 33(1), 37–46 (2019)

    Article  Google Scholar 

  16. Biswas, A., Chandrakasan, A.P.: Conv-RAM: an energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications. In: 2018 IEEE International Solid—State Circuits Conference—(ISSCC), pp. 488–490 (2018). https://doi.org/10.1109/ISSCC.2018.8310397

  17. Qian, Y., Fan, Y., Hu, W., Soong, F.K.: On the training aspects of deep neural network (DNN) for parametric TTS synthesis. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3829–3833 (2014). https://doi.org/10.1109/ICASSP.2014.6854318

  18. Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., Khudanpur, S.: X-vectors: robust DNN embeddings for speaker recognition. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 5329–5333 (2018). https://doi.org/10.1109/ICASSP.2018.8461375

  19. Strom, N: Scalable distributed DNN training using commodity GPU cloud computing. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  20. Pan, J., et al.: Investigation of deep neural networks (DNN) for large vocabulary continuous speech recognition: why DNN surpasses GMMs in acoustic modelling. In: 2012 8th International Symposium on Chinese Spoken Language Processing. IEEE (2012)

    Google Scholar 

  21. Voigt, S.: Liquidity and Price Informativeness in Blockchain-Based Markets. Working Paper (2020)

    Google Scholar 

  22. Elngar, A.A.: IoT-based efficient tamper detection mechanism for healthcare application. Int. J. Netw. Secur. 20(3), 489–495 (2018). https://doi.org/10.6633/IJNS.201805.20(3).11

  23. Ogu, R.E., Chukwudebe, G.A.: Development of a cost-effective electricity theft detection and prevention system based on IoT technology. In: 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), pp. 756–760 (2017). https://doi.org/10.1109/NIGERCON.2017.8281943

  24. Pandit, S., et al.: Smart energy meter using Internet of Things (IoT). Vishwakarma J. Eng. Res. 1(2), 125–133. Retrieved from http://103.97.164.116:10028/index.php/vjer/article/view/24

  25. Bagci, I.E., et al.: Using channel state information for tamper detection in the Internet of Things. In: Proceedings of the 31st Annual Computer Security Applications Conference (ACSAC 2015). Association for Computing Machinery, New York, pp. 131–140 (2015). https://doi.org/10.1145/2818000.2818028

  26. Zheng, Y., Dhabu, S.S., Chang, C.-H.: Securing IoT monitoring device using PUF and physical layer authentication. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351844

  27. Kim, S.R., Kim, J.N., Kim, S.T., et al.: Anti-reversible dynamic tamper detection scheme using distributed image steganography for IoT applications. J. Supercomput. 74, 4261–4280 (2018). https://doi.org/10.1007/s11227-016-1848-y

    Article  Google Scholar 

  28. Breitenbacher, D., et al.: HADES-IoT: a practical host-based anomaly detection system for IoT devices. In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security (Asia CCS’19). Association for Computing Machinery, New York, pp. 479–484. https://doi.org/10.1145/3321705.3329847

  29. Singh, V., et al.: IoT-Q-band: a low cost internet of things based wearable band to detect and track absconding COVID-19 quarantine subjects. EAI Endorsed Trans. Internet of Things 6(21), 4. ISSN 2414-1399

    Google Scholar 

  30. Hussan, M., Parah, S.A., Gull, S., et al.: Tamper detection and self-recovery of medical imagery for smart health. Arab. J. Sci. Eng. 46, 3465–3481 (2021). https://doi.org/10.1007/s13369-020-05135-9

    Article  Google Scholar 

  31. Kamatagi, A.P., Umadi, R.B., Sujith, V.: Development of energy meter monitoring system (EMMS) for data acquisition and tampering detection using IoT. In: 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2020, pp. 1–6 (2020). https://doi.org/10.1109/CONECCT50063.2020.9198495

  32. Wang, W., Lu, Y.: Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In: 2018 Conference Series: Materials Science And Engineering, vol. 324, p. 012049

    Google Scholar 

  33. Qi, J., Du, J., Siniscalchi, S.M., Ma, X., Lee, C.-H.: On mean absolute error for deep neural network based vector-to-vector regression. IEEE Signal Process. Lett. 27, 1485–1489 (2020). https://doi.org/10.1109/LSP.2020.3016837

    Article  Google Scholar 

  34. Blanchet, J., et al.: Multivariate distributionally robust convex regression under absolute error loss. Adv. Neural Inf. Process. Syst. 32, 11817–11826 (2019)

    Google Scholar 

  35. Mazzei, D., et al.: A Blockchain Tokenizer for Industrial IOT trustless applications. Future Gener. Comput. Syst. 105, 432–445 (2020). ISSN 0167-739X. https://doi.org/10.1016/j.future.2019.12.020

  36. Lim, J., Kim, Y., Yoo, C.: Chain veri: blockchain-based firmware verification system for IoT environment. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1050–1056 (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00194

  37. Kaur, E.: IOT Sensing data for recycled water Version 1 (2021 June), from https://www.kaggle.com/ekleenkaur17/iot-sensing-data-for-recycled-water

  38. Chaurasia, A.K., Pandey, H.K., Tiwari, S.K., et al.: Groundwater quality assessment using water quality index (WQI) in parts of Varanasi District, Uttar Pradesh, India. J. Geol. Soc. India 92, 76–82 (2018). https://doi.org/10.1007/s12594-018-0955-1

    Article  Google Scholar 

  39. Hong, Z., Chu, C., Zhang, L.L., Yu, Y.: Optimizing an emission trading scheme for local governments: a Stackelberg game mode and hybrid algorithm (2017)

    Google Scholar 

  40. Asikgil, B., Erar, A.: Regression error characteristic curves based on the choice of best estimation method. Selcuk J. Appl. Math. (2013)

    Google Scholar 

  41. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, NY (2001)

    Book  Google Scholar 

  42. Breiman, L., Friedman, J., Ohlsen, R., Stone, C.: Classification and Regression Trees. Wadsworth, Monterey (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, E. (2022). IoT Regulated Water Quality Prediction Through Machine Learning for Smart Environments. In: Marques, G., González-Briones, A., Molina López, J.M. (eds) Machine Learning for Smart Environments/Cities. Intelligent Systems Reference Library, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-97516-6_3

Download citation

Publish with us

Policies and ethics