Skip to main content

Space Exploration and Astronomy Automation

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

The history of automated systems operating in space environments extends approximately 75 years; practical automated tools to support astronomical observation have existed for nearly 200. Physical servomechanisms using timers and simple predeveloped rules have evolved to hardware (and, increasingly, software) capabilities with years of functioning on the Martian surface and traveling to the heliopause at the edge of interstellar space. Modern spaceflight operations represent an increasing capability to enable distributed coordination among multiple automation systems, complex communication networks, and multidisciplinary communities of scientists and engineers. This chapter addresses issues of automation and autonomy applied to software and hardware operations, as well as functions and constraints for communication, cooperation, and coordination. Examples of distributed spaceflight operations using a supervisory control paradigm include current human exploration activity, scientific communities conducting physics and planetary science study, and plans for advanced human-agent and human-human systems integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Cosmoquest: The story of Joseph von Fraunhofer and the first German Equatorial Mount. vBulletin Solutions. https://forum.cosmoquest.org/showthread.php?89447-The-story-of-Joseph-von-Fraunhofer-and-the-first-German-Equatorial-Mount(2009). Accessed 7 Dec 2020

  3. Jahn, W., Kirmeier, J., Mewes, C., Preyss, C.R., Weber, L.: Fraunhofer in Benediktbeuern Glassworks and Workshop. Munchen (2008)

    Google Scholar 

  4. Astrophysics, C.F.: Fraunhofer’s 1824 Dorpat Refractor Mount: Reverse Salients and Big Telescopes in the 19th Century. MA: Harvard-Smithsonian Center for Astrophysics, CfA Colloquium Cambridge (2016)

    Google Scholar 

  5. Valder, V.: Tartu observatory: Friedrich Georg Wilhelm Struve. https://www.muuseum.ut.ee/vvebook/pages/4_3.html (n.d.). Accessed 7 Dec 2020

  6. Wei-Haas, M.: The True Story of “Hidden Figures,” the Forgotten Women Who Helped Win the Space Race. Smithsonian Magazine, Washington (2016)

    Google Scholar 

  7. Blair, E.: ‘Hidden Figures’ No More: Meet the Black Women Who Helped Send America To Space. Washington, DC: National Public Radio (2016)

    Google Scholar 

  8. Howell, E.: NASA’s Real ‘Hidden Figures’. Spacecom: F (2020)

    Google Scholar 

  9. Skopinski, T.H., Johnson, K.G.: Determination of Azimuth Angle at Burnout for Placing a Satellite Over a Selected Earth Position. NASA, Langley Field (1960)

    Google Scholar 

  10. Greicius, A.: NASA contacts Voyager 2 using upgraded deep space network dish. NASA. https://www.nasa.gov/feature/jpl/nasa-contacts-voyager-2-using-upgraded-deep-space-network-dish (2020). Accessed 7 Dec 2020

  11. JPL N: Voyager mission status. NASA. https://voyager.jpl.nasa.gov/mission/status/#where_are_they_now (2020). Accessed 29 Dec 2020

  12. Rao, R.: Voyager 1 Discovers Faint Plasma ‘Hum’ in Interstellar Space. Spacecom. New York, NY: Future US, Inc. (2021)

    Google Scholar 

  13. Biesiadecki, J.J., Maimone, M.W.: The Mars Exploration Rover surface mobility flight software: driving ambition. In: 2006 IEEE Aerospae Conference Proceedings, p 15. IEEE, Big Sky (2006)

    Google Scholar 

  14. Maimone, M., Leger, P., Biesiadecki, J.: Overview of the Mars Exploration Rovers Autonomous Mobility and Vision Capabilities. NASA JPL, Pasadena (2007)

    Google Scholar 

  15. Clark, S.: China Lands Its First Probe on Mars. Spaceflight Now, Palo Alto, CA: Annual Reviews (2021)

    Google Scholar 

  16. Agency US: Images and scientific results from hope probe. Emirates Mars Mission. https://www.emiratesmarsmission.ae/gallery/images-of-hope-probe/1 (2021). Accessed 17 May 2021

  17. Stanton, N.A., Salmon, P.M., Jenkins, D.P., Walker, G.H.: Human Factors in the Design and Evaluation of Central Control Room Operations. CRC Press, Boca Raton (2010)

    Google Scholar 

  18. Klesh, A.T., Cutler, J.W., Atkins, E.M.: Cyber-physical challenges for space systems. In: 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems. IEEE, Beijing (2012)

    Google Scholar 

  19. Reza, H., Straub, J., Alexander, N., Korvald, C., Hubber, J., Chawla, A.: Toward requirements engineering of cyber-physical systems: modeling CubeSat. In: 2016 IEEE Aerospace Conference. IEEE, Big Sky, 5–12 Mar 2016

    Google Scholar 

  20. Repperger, D.W., Phillips, C.A.: The human role in automation. In: Nof, S.Y. (ed.) Springer Handbook of Automation Springer Handbooks, pp. 295–304. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78831-7_17

    Chapter  MATH  Google Scholar 

  21. NASA: NASA Systems Engineering Handbook. NASA, Washington, DC (2007)

    Google Scholar 

  22. Li, H., Wickens, C.D., Sarter, N., Sebok, A.: Stages and levels of automation in support of space teleoperations. Hum. Factors. 56(6), 1050–1061 (2014). https://doi.org/10.1177/0018720814522830

    Article  Google Scholar 

  23. Onnasch, L., Wickens, C.D., Li, H., Manzey, D.: Human performance consequences of stages and levels of automation: an integrated meta-analysis. Hum. Factors. 56(3), 476–488 (2014). https://doi.org/10.1177/0018720813501549

    Article  Google Scholar 

  24. Miller, D., Sun, A., Ju, W.: Situation awareness with different levels of automation. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, San Diego, 5–8 Oct 2014

    Google Scholar 

  25. Fasth-Berglund, A., Stahr, J.: Task allocation in production systems – measuring and analysing levels of automation. In: Proceedings of the 12th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design, and Evaluation of Human-Machine Systems, pp 435–441. https://doi.org/10.3182/20130811-5-US-2037.00032 (2013)

    Google Scholar 

  26. Williams, D.R.: Venera 9 Descent Craft. NASA. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1975-050D (2020). Accessed 29 Dec 2020

  27. Williams, D.R.: Venera 13 Descent Craft. NASA. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1981-106D (2020). Accessed 29 Dec 2020

  28. Caldwell, B.S.: Multi-team dynamics and distributed expertise in mission operations. Aviat. Space Environ. Med. 76(6):Sec II, B145–B153 (2005)

    Google Scholar 

  29. Rasmussen, J.: The role of hierarchical knowledge representation in decision making and system management. IEEE Trans. Syst. Man Cybern. SMC-15(2), 234–243 (1985). https://doi.org/10.1109/TSMC.1985.6313353

    Google Scholar 

  30. Sheridan, T.B.: Musings on models and the genius of Jens Rasmussen. Appl. Ergon. 59, 598–601 (2017). https://doi.org/10.1016/j.apergo.2015.10.015

    Google Scholar 

  31. Caldwell, B.S.: Analysis and modeling of information flow and distributed expertise in space-related operations. Acta Astronaut. 56, 996–1004 (2005)

    Article  Google Scholar 

  32. Perl, S.M., DeLaurentis, D.A., Caldwell, B.S.: A system-of-systems approach to enhance information exchange for the mars science laboratory mission. In: SpaceOps 2010 Conference Delivering on the Dream, AIAA, Huntsville. https://doi.org/10.2514/6.2010-2028 (2010)

    Google Scholar 

  33. Wikipedia: Radio astronomy. Wikimedia Foundation. https://en.wikipedia.org/wiki/Radio_astronomy (2020). Accessed 18 Dec 2020

  34. Clark, B.G.: Information-processing systems in radio astronomy and astronomy. Annu. Rev. Astron. Astrophys. 8, 115–138 (1970)

    Article  Google Scholar 

  35. Davies, J.G.: Automation and astronomy. Astron. Astrophys. Suppl. 15, 331–332 (1974)

    Google Scholar 

  36. Sindiy, O.V., DeLaurentis, D.A., Caldwell, B.S.: Command, control, communication and information architectural analysis via system-of-systems engineering. In: AIAA Space 2010 (2010)

    Google Scholar 

  37. Tzinis, I.: Space communications and navigation. NASA. https://www.nasa.gov/directorates/heo/scan/services/networks/ (2020). Accessed 17 Dec 2020

  38. Wikipedia: K band (IEEE). Wikimedia Foundation. https://en.wikipedia.org/wiki/K_band_(IEEE) (2018). Accessed 17 Dec 2020

  39. Gebhardt, C.: Carrington event still provides warning of sun’s potential 161 years later. NASASpaceflight.com. https://www.nasaspaceflight.com/2020/08/carrington-event-warning/ (2020). Accessed 27 Dec 2020

  40. Cremers, C.J., Birkebak, R.C., White, J.E.: Lunar surface temperatures from Apollo 12. The Moon. 3(3), 346–351 (1971)

    Article  Google Scholar 

  41. Bajracharya, M., Maimone, M.W., Helmrick, D.: Autonomy for Mars rovers: past, present, and future. Computer. 41(12 (December)), 44–50 (2008). https://doi.org/10.1109/MC.2008.479

    Google Scholar 

  42. NASA: Sols 871-872: a software upgrade is available. Install now? NASA. https://mars.nasa.gov/MSL/mission/mars-rover-curiosity-mission-updates/index.cfm?mu=sols-871-872-a-software-upgrade-is-available-install-now (2015). Accessed 18 Dec 2020

  43. NASA: Mars reconnaissance orbiter. NASA. https://mars.nasa.gov/mro/ (2020). Accessed 29 Dec 2020

  44. Swindle T.: Apollo 12: fifty years ago, a passionate scientist’s keen eye led to the first pinpoint landing on the Moon. The Conversation US, Inc. https://theconversation.com/apollo-12-fifty-years-ago-a-passionate-scientists-keen-eye-led-to-the-first-pinpoint-landing-on-the-moon-126100 (2019). Accessed 27 Dec 2020

  45. Mattice, J.J.: Hubble Space Telescope Systems Engineering Case Study. Center for Systems Engineering, Air Force INstitute of Technology, Wright-Patterson OH: US Air Force (2008)

    Google Scholar 

  46. Spaceflight CoH: Pathways to Exploration—Rationales and Approaches for a U.S. Program of Human Space Exploration. National Academies Press, Washington, DC (2014)

    Google Scholar 

  47. Aragon, C.R.: Collaborative analytics for astrophysics explorations. In: Nof, S. (ed.) Springer Handbook of Automation, pp. 1645–1670. Springer Handbooks, Heidelberg (2009)

    Chapter  Google Scholar 

  48. Aragon, C.R., Bailey, S.J., Poon, S., Rune, K., Thomas, R.C.: Sunfall: a collaborative visual analytics system for astrophysics. J. Phys. Conf. Ser. 124(1) (2008)

    Google Scholar 

  49. Keel, W.C., Oswalt, T., Mack, P., Henson, G., Hillwig, T., Batcheldor, D., Berrington, R., De Pree, C., Hartmann, D., Leake, M., Licandro, J., Murphy, B., Webb, J., Wood, M.A.: The remote observatories of the Southeastern Association for Research in Astronomy (SARA). Publ. Astron. Soc. Pac. 129(971) (2017). https://doi.org/10.1088/1538-3873/129/971/015002

  50. Ho, A.Y.Q.: Explosions at the edge, vol. 323. Scientific American / Springer Nature America, New York (2020)

    Google Scholar 

  51. JPL N: Mars helicopter flight delayed to no earlier than April 14. https://mars.nasa.gov/technology/helicopter/status/291/mars-helicopter-flight-delayed-to-no-earlier-than-april-14/ (2021). Accessed 13 May 2021

  52. Kluger, J.: How NASA’s Mars Helicopter Flight Opens the Door to More Ambitious Missions. New York, NY: Time, Inc. (2021)

    Google Scholar 

  53. Messier, D.: Engineers Identify Software Solution for Ingenuity Mars Helicopter Anomaly. Mojave, Parabolic Arc (2021)

    Google Scholar 

  54. NASA: NASA’s Perseverance Mars Rover Extracts First Oxygen from Red Planet. NASA, Jet Propulsion, Laboratory California Institute of Technology, Pasadena (2021)

    Google Scholar 

  55. Jackman, A.: Problem Solved. NASA Industrial Engineer Sets Sights on Mars. Institute of Industrial and Systems Engineers, Norcross (2020)

    Google Scholar 

  56. Greicius, A.: Mars 2020 Perseverance Healthy and on Its Way Mars 2020, vol. 2020. NASA, Washington (2020)

    Google Scholar 

  57. Caldwell, B.S.: Meadows on the way to Mars: creating future spaceflight capabilities. World Fut. Rev. 6(4), 378–389 (2015). https://doi.org/10.1177/1946756715569244

    Article  Google Scholar 

  58. Hill, J.R., Caldwell, B.S.: A bootstrap method for the analysis of physiological data in uncontrolled settings. In: Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting, pp 136–140. Sage, Seattle, Oct 31–Nov 4 2019

    Google Scholar 

  59. Hill, J.R., Caldwell, B.S.: Toward better understanding of function allocation requirements for planetary EVA and habitat tasks. In: Proceedings of the Human Factors and Ergonomics Society 2018 Annual Meeting, pp 29–33. Sage, Philadelphia, Oct 2–5 2018

    Google Scholar 

  60. King, M., Goguichvili, S.: Cybersecurity Threats in Space: A Roadmap for Future Policy, vol. 2021. CTRL Forward, Wilson Center Science and Technology Innovation Program, Washington, DC (2020)

    Google Scholar 

  61. Nyre-Yu, M., Caldwell, B.S.: Observing cyber security incident response: qualitative themes from field research. In: Proceedings of the Human Factors and Ergonomics Society 2018 Annual Meeting, pp 437–441. Sage, Seattle, 2019

    Google Scholar 

  62. Jewett, R.: New Space Players Take Stock of Headline-Grabbing Security Breaches. Via Satellite, Rockville (2021)

    Google Scholar 

  63. Hartman, N., Rosche, P., Fischer, K.: A framework for evaluating collaborative product representations in product lifecycle workflows. In: IFIP International Conference on Product Lifecycle Management, 2012. Springer, pp 424–434

    Google Scholar 

  64. Hartman, N.W.: Evaluating lightweight 3D graphics formats for product visualization and data exchange. J. Appl. Sci. Eng. Technol. 3 (2009)

    Google Scholar 

  65. Wood, I.: 20,000 Petabytes under the Sea: Exploring the Potential of Underwater Data Centres. Cloud Computing News, Bristol (2020)

    Google Scholar 

  66. Endsley, M.R., Bolté, B., Jones, D.G.: Designing for Situation Awareness. Taylor & Francis, Boca Raton (2003)

    Book  Google Scholar 

  67. Forrester, J.W.: Principles of Systems. 2nd preliminary edn. Pegasus Communications, Waltham (1990)

    Google Scholar 

  68. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  69. Caldwell, B.S., Wang, E.: Delays and user performance in human-computer-network interaction tasks. Hum. Factors. 51(6), 813–830 (2009)

    Article  Google Scholar 

  70. Commission E: The ‘Blue Guide’ on the Implementation of EU Products Rules 2016. Publications Office of the European Union, Luxembourg (2016)

    Google Scholar 

Download references

Acknowledgments

The author has been supported by multiple NASA grants, including as Director of the NASA-funded Indiana Space Grant Consortium (INSGC). INSGC support was the only NASA grant active during the period of writing this chapter. The author thanks the Editor of the Handbook for the invitation and opportunity to contribute this chapter to the Handbook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrett S. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caldwell, B.S. (2023). Space Exploration and Astronomy Automation. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_52

Download citation

Publish with us

Policies and ethics