Skip to main content

Automating Prognostics and Prevention of Errors, Conflicts, and Disruptions

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

Errors, conflicts, and disruptions exist in many systems. A fundamental question from industries is how can they be eliminated by automation, or can we at least use automation to minimize their damage? The purpose of this chapter is to illustrate a theoretical background and applications of how to automatically prevent errors, conflicts, and disruptions with various devices, technologies, methods, and systems. Eight key functions to prevent errors and conflicts are identified and their theoretical background and applications in both production and service are explained with examples. As systems and networks become larger and more complex, such as global enterprises, the Internet, and healthcare networks, error and conflict prognostics and prevention become more important and challenging; the focus is shifting from passive response to proactive and predictive prognostics and prevention. Additional theoretical developments and implementation efforts are needed to advance the prognostics and prevention of errors and conflicts in many real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nof, S.Y., Wilhelm, W.E., Warnecke, H.-J.: Industrial Assembly. Springer (2017)

    Google Scholar 

  2. Lopes, L.S., Camarinha-Matos, L.M.: A machine learning approach to error detection and recovery in assembly. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. 95, ’Human Robot Interaction and Cooperative Robots’, vol. 3, pp. 197–203 (1995)

    Google Scholar 

  3. Najjari, H., Steiner, S.J.: Integrated sensor-based control system for a flexible assembly. Mechatronics. 7(3), 231–262 (1997)

    Google Scholar 

  4. Steininger, A., Scherrer, C.: On finding an optimal combination of error detection mechanisms based on results of fault injection experiments. In: Proc. 27th Annu. Int. Symp. Fault-Toler. Comput., FTCS-27, Digest of Papers, pp. 238–247 (1997)

    Google Scholar 

  5. Toguyeni, K.A., Craye, E., Gentina, J.C.: Framework to design a distributed diagnosis in FMS. Proc. IEEE Int. Conf. Syst. Man. Cybern. 4, 2774–2779 (1996)

    Google Scholar 

  6. Kao, J.F.: Optimal recovery strategies for manufacturing systems. Eur. J. Oper. Res. 80(2), 252–263 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Bruccoleri, M., Pasek, Z.J.: Operational issues in reconfigurable manufacturing systems: exception handling. In: Proc. 5th Biannu. World Autom. Congr. (2002)

    Google Scholar 

  8. Miceli, T., Sahraoui, H.A., Godin, R.: A metric based technique for design flaws detection and correction. In: Proc. 14th IEEE Int. Conf. Autom. Softw. Eng., pp. 307–310 (1999)

    Google Scholar 

  9. Bolchini, C., Fornaciari, W., Salice, F., Sciuto, D.: Concurrent error detection at architectural level. In: Proc. 11st Int. Symp. Syst. Synth., pp. 72–75 (1998)

    Google Scholar 

  10. Bolchini, C., Pomante, L., Salice, F., Sciuto, D.: Reliability properties assessment at system level: a co-design framework. J. Electron. Test. 18(3), 351–356 (2002)

    Google Scholar 

  11. Jeng, M.D.: Petri nets for modeling automated manufacturing systems with error recovery. IEEE Trans. Robot. Autom. 13(5), 752–760 (1997)

    Google Scholar 

  12. Kanawati, G.A., Nair, V.S.S., Krishnamurthy, N., Abraham, J.A.: Evaluation of integrated system-level checks for on-line error detection. In: Proc. IEEE Int. Comput. Perform. Dependability Symp., pp. 292–301 (1996)

    Google Scholar 

  13. Klein, B.D.: How do actuaries use data containing errors?: models of error detection and error correction. Inf. Resour. Manag. J. 10(4), 27–36 (1997)

    Google Scholar 

  14. Ronsse, M., Bosschere, K.: Non-intrusive detection of synchronization errors using execution replay. Autom. Softw. Eng. 9(1), 95–121 (2002)

    MATH  Google Scholar 

  15. Svenson, O., Salo, I.: Latency and mode of error detection in a process industry. Reliab. Eng. Syst. Saf. 73(1), 83–90 (2001)

    Google Scholar 

  16. Chen, X.W., Nof, S.Y.: Conflict and error prevention and detection in complex networks. Automatica. 48, 770–778 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)

    Google Scholar 

  18. Klein, M., Dellarocas, C.: A knowledge-based approach to handling exceptions in workflow systems. Comput. Support. Coop. Work. 9, 399–412 (2000)

    Google Scholar 

  19. Raich, A., Cinar, A.: Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AICHE J. 42(4), 995–1009 (1996)

    Google Scholar 

  20. Chen, X.W., Nof, S.Y.: Interactive, Constraint-Network Prognostics and Diagnostics to Control Errors and Conflicts (IPDN). U.S. Patent 10,496,463, 2019

    Google Scholar 

  21. Chen, X.W., Nof, S.Y.: Interactive, Constraint-Network Prognostics and Diagnostics to Control Errors and Conflicts (IPDN). U.S. Patent 9,760,422, 2017

    Google Scholar 

  22. Nof, S.Y., Chen, X.W.: Failure Repair Sequence Generation for Nodal Network. U.S. Patent 9,166,907, 2015

    Google Scholar 

  23. Chen, X.W., Nof, S.Y.: Interactive, Constraint-Network Prognostics and Diagnostics to Control Errors and Conflicts (IPDN). U.S. Patent 9,009,530, 2015

    Google Scholar 

  24. Chen, X.W., Nof, S.Y.: Interactive Conflict Detection and Resolution for Air and Air-Ground Traffic Control. U.S. Patent 8,831,864, 2014

    Google Scholar 

  25. Chang, C.-Y., Chang, J.-W., Jeng, M.D.: An unsupervised self-organizing neural network for automatic semiconductor wafer defect inspection. In: IEEE Int. Conf. Robot. Autom. ICRA, pp. 3000–3005 (2005)

    Google Scholar 

  26. Moganti, M., Ercal, F.: Automatic PCB inspection systems. IEEE Potentials. 14(3), 6–10 (1995)

    Google Scholar 

  27. Rau, H., Wu, C.-H.: Automatic optical inspection for detecting defects on printed circuit board inner layers. Int. J. Adv. Manuf. Technol. 25(9–10), 940–946 (2005)

    Google Scholar 

  28. Calderon-Martinez, J.A., Campoy-Cervera, P.: An application of convolutional neural networks for automatic inspection. In: IEEE Conf. Cybern. Intell. Syst., pp. 1–6 (2006)

    Google Scholar 

  29. Duarte, F., Arauio, H., Dourado, A.: Automatic system for dirt in pulp inspection using hierarchical image segmentation. Comput. Ind. Eng. 37(1–2), 343–346 (1999)

    Google Scholar 

  30. Wilson, J.C., Berardo, P.A.: Automatic inspection of hazardous materials by mobile robot. Proc. IEEE Int. Conf. Syst. Man. Cybern. 4, 3280–3285 (1995)

    Google Scholar 

  31. Choi, J.Y., Lim, H., Yi, B.-J.: Semi-automatic pipeline inspection robot systems. In: SICE-ICASE Int. Jt. Conf., pp. 2266–2269 (2006)

    Google Scholar 

  32. Finogenoy, L.V., Beloborodov, A.V., Ladygin, V.I., Chugui, Y.V., Zagoruiko, N.G., Gulvaevskii, S.Y., Shul’man, Y.S., Lavrenyuk, P.I., Pimenov, Y.V.: An optoelectronic system for automatic inspection of the external view of fuel pellets. Russ. J. Nondestruct. Test. 43(10), 692–699 (2007)

    Google Scholar 

  33. Ni, C.W.: Automatic inspection of the printing contents of soft drink cans by image processing analysis. Proc. SPIE. 3652, 86–93 (2004)

    Google Scholar 

  34. Cai, J., Zhang, G., Zhou, Z.: The application of area-reconstruction operator in automatic visual inspection of quality control. Proc. World Congr. Intell. Control Autom. (WCICA). 2, 10111–10115 (2006)

    Google Scholar 

  35. Erne, O., Walz, T., Ettemeyer, A.: Automatic shearography inspection systems for aircraft components in production. Proc. SPIE. 3824, 326–328 (1999)

    Google Scholar 

  36. Huang, C.K., Wang, L.G., Tang, H.C., Tarng, Y.S.: Automatic laser inspection of outer diameter, run-out taper of micro-drills. J. Mater. Process. Technol. 171(2), 306–313 (2006)

    Google Scholar 

  37. Chen, L., Wang, X., Suzuki, M., Yoshimura, N.: Optimizing the lighting in automatic inspection system using Monte Carlo method. Jpn. J. Appl. Phys. Part 1. 38(10), 6123–6129 (1999)

    Google Scholar 

  38. Godoi, W.C., da Silva, R.R., Swinka-Filho, V.: Pattern recognition in the automatic inspection of flaws in polymeric insulators. Insight Nondestr. Test. Cond. Monit. 47(10), 608–614 (2005)

    Google Scholar 

  39. Khan, U.S., Igbal, J., Khan, M.A.: Automatic inspection system using machine vision. In: Proc. 34th Appl. Imag. Pattern Recognit. Workshop, pp. 210–215 (2005)

    Google Scholar 

  40. Chiang, L.H., Braatz, R.D., Russell, E.: Fault Detection and Diagnosis in Industrial Systems. Springer, London/New York (2001)

    MATH  Google Scholar 

  41. Deb, S., Pattipati, K.R., Raghavan, V., Shakeri, M., Shrestha, R.: Multi-signal flow graphs: a novel approach for system testability analysis and fault diagnosis. IEEE Aerosp. Electron. Syst. Mag. 10(5), 14–25 (1995)

    Google Scholar 

  42. Pattipati, K.R., Alexandridis, M.G.: Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. Syst. Man Cybern. 20(4), 872–887 (1990)

    MATH  Google Scholar 

  43. Pattipati, K.R., Dontamsetty, M.: On a generalized test sequencing problem. IEEE Trans. Syst. Man Cybern. 22(2), 392–396 (1992)

    MATH  Google Scholar 

  44. Raghavan, V., Shakeri, M., Pattipati, K.: Optimal and near-optimal test sequencing algorithms with realistic test models. IEEE Trans. Syst. Man. Cybern. A. 29(1), 11–26 (1999)

    Google Scholar 

  45. Raghavan, V., Shakeri, M., Pattipati, K.: Test sequencing algorithms with unreliable tests. IEEE Trans. Syst. Man. Cybern. A. 29(4), 347–357 (1999)

    Google Scholar 

  46. Shakeri, M., Pattipati, K.R., Raghavan, V., Patterson-Hine, A., Kell, T.: Sequential Test Strategies for Multiple Fault Isolation. IEEE, Atlanta (1995)

    Google Scholar 

  47. Shakeri, M., Raghavan, V., Pattipati, K.R., Patterson-Hine, A.: Sequential testing algorithms for multiple fault diagnosis. IEEE Trans. Syst. Man. Cybern. A. 30(1), 1–14 (2000)

    Google Scholar 

  48. Tu, F., Pattipati, K., Deb, S., Malepati, V.N.: Multiple Fault Diagnosis in Graph-Based Systems. International Society for Optical Engineering, Orlando (2002)

    Google Scholar 

  49. Tu, F., Pattipati, K.R.: Rollout strategies for sequential fault diagnosis. IEEE Trans. Syst. Man. Cybern. A. 33(1), 86–99 (2003)

    Google Scholar 

  50. Tu, F., Pattipati, K.R., Deb, S., Malepati, V.N.: Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems. IEEE Trans. Syst. Man. Cybern. A. 33(1), 73–85 (2003)

    Google Scholar 

  51. Feng, C., Bhuyan, L.N., Lombardi, F.: Adaptive system-level diagnosis for hypercube multiprocessors. IEEE Trans. Comput. 45(10), 1157–1170 (1996)

    MATH  Google Scholar 

  52. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  53. Karamanolis, C., Giannakopolou, D., Magee, J., Wheather, S.: Model checking of workflow schemas. In: 4th Int. Enterp. Distrib. Object Comp. Conf., pp. 170–181 (2000)

    Google Scholar 

  54. Chan, W., Anderson, R.J., Beame, P., Notkin, D., Jones, D.H., Warner, W.E.: Optimizing symbolic model checking for state charts. IEEE Trans. Softw. Eng. 27(2), 170–190 (2001)

    Google Scholar 

  55. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems. In: Proc. 10th Int. SPIN Workshop Model Checking Softw. (2003)

    MATH  Google Scholar 

  56. Hatcliff, J., Deng, W., Dwyer, M., Jung, G., Ranganath, V.P.: Cadena: an integrated development, analysis, and verification environment for component-based systems. In: Proc. 2003 Int. Conf. Softw. Eng. ICSE, Portland (2003)

    Google Scholar 

  57. T. Ball, S. Rajamani: Bebop: a symbolic modelchecker for Boolean programs, Proc. 7th Int. SPIN Workshop, Lect. Notes Comput. Sci. 1885, 113–130 (2000)

    Google Scholar 

  58. Brat, G., Havelund, K., Park, S., Visser, W.: Java PathFinder – a second generation of a Java model-checker. In: Proc. Workshop Adv. Verif. (2000)

    Google Scholar 

  59. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, H.Z.: Bandera: extracting finite-state models from Java source code. In: Proceedings of the 22nd International Conference on Software Engineering (2000)

    Google Scholar 

  60. Godefroid, P.: Model-checking for programming languages using VeriSoft. In: Proceedings of the 24th Symposium on Principles of Programming Languages (POPL’97), pp. 174–186 (1997)

    Google Scholar 

  61. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular model checking framework. In: Proceedings of 9th European Software Engineering Conference on held jointly with the 11th ACM SIGSOFT Symposium Foundations of Software Engineering (2003)

    Google Scholar 

  62. Mitra, S., McCluskey, E.J.: Diversity techniques for concurrent error detection. In: Proceedings of 2nd International Symposium on Quality Electronic Design, IEEE Computer Society, pp. 249–250 (2001)

    Google Scholar 

  63. Chung, S.-L., Wu, C.-C., Jeng, M.: Failure Diagnosis: A Case Study on Modeling and Analysis by Petri Nets. IEEE, Washington, DC (2003)

    Google Scholar 

  64. Georgilakis, P.S., Katsigiannis, J.A., Valavanis, K.P., Souflaris, A.T.: A systematic stochastic Petri net based methodology for transformer fault diagnosis and repair actions. J. Intell. Robot. Syst. Theory Appl. 45(2), 181–201 (2006)

    Google Scholar 

  65. Ushio, T., Onishi, I., Okuda, K.: Fault Detection Based on Petri Net Models with Faulty Behaviors. IEEE, San Diego (1998)

    Google Scholar 

  66. Rezai, M., Ito, M.R., Lawrence, P.D.: Modeling and Simulation of Hybrid Control Systems by Global Petri Nets. IEEE, Seattle (1995)

    Google Scholar 

  67. Rezai, M., Lawrence, P.D., Ito, M.R.: Analysis of Faults in Hybrid Systems by Global Petri Nets. IEEE, Vancouver (1995)

    Google Scholar 

  68. Rezai, M., Lawrence, P.D., Ito, M.B.: Hybrid Modeling and Simulation of Manufacturing Systems. IEEE, Los Angeles (1997)

    Google Scholar 

  69. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete-event systems. IEEE Trans. Autom. Control. 40(9), 1555–1575 (1995)

    MathSciNet  MATH  Google Scholar 

  70. Zad, S.H., Kwong, R.H., Wonham, W.M.: Fault diagnosis in discrete-event systems: framework and model reduction. IEEE Trans. Autom. Control. 48(7), 1199–1212 (2003)

    MathSciNet  MATH  Google Scholar 

  71. Zhou, M., DiCesare, F.: Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Kluwer, Boston (1993)

    MATH  Google Scholar 

  72. Wenbin, Q., Kumar, R.: Decentralized failure diagnosis of discrete event systems. IEEE Trans. Syst. Man. Cybern. A. 36(2), 384–395 (2006)

    Google Scholar 

  73. Brall, A.: Human reliability issues in medical care – a customer viewpoint. In: Proceedings of Annual Reliability and Maintainability Symposium, pp. 46–50 (2006)

    Google Scholar 

  74. Furukawa, H.: Challenge for preventing medication errors-learn from errors-: what is the most effective label display to prevent medication error for injectable drug? In: Proceedings of the 12th International Conference on Human Computer Interaction: HCI Intelligent Multimodal Interaction Environments, Lecture Notes on Computer Science, 4553, pp. 437–442 (2007)

    Google Scholar 

  75. Huang, G., Medlam, G., Lee, J., Billingsley, S., Bissonnette, J.-P., Ringash, J., Kane, G., Hodgson, D.C.: Error in the delivery of radiation therapy: results of a quality assurance review. Int. J. Radiat. Oncol. Biol. Phys. 61(5), 1590–1595 (2005)

    Google Scholar 

  76. Nyssen, A.-S., Blavier, A.: A study in anesthesia. Ergonomics. 49(5/6), 517–525 (2006)

    Google Scholar 

  77. Unruh, K.T., Pratt, W.: Patients as actors: the patient’s role in detecting, preventing, and recovering from medical errors. Int. J. Med. Inform. 76(1), 236–244 (2007)

    Google Scholar 

  78. Chao, C.C., Jen, W.Y., Hung, M.C., Li, Y.C., Chi, Y.P.: An innovative mobile approach for patient safety services: the case of a Taiwan health care provider. Technovation. 27(6–7), 342–361 (2007)

    Google Scholar 

  79. Malhotra, S., Jordan, D., Shortliffe, E., Patel, V.L.: Workflow modeling in critical care: piecing together your own puzzle. J. Biomed. Inform. 40(2), 81–92 (2007)

    Google Scholar 

  80. Morris, T.J., Pajak, J., Havlik, F., Kenyon, J., Calcagni, D.: Battlefield medical information system-tactical (BMIST): the application of mobile computing technologies to support health surveillance in the Department of Defense, Telemed. J. e-Health. 12(4), 409–416 (2006)

    Google Scholar 

  81. Rajendran, M., Dhillon, B.S.: Human error in health care systems: bibliography. Int. J. Reliab. Qual. Saf. Eng. 10(1), 99–117 (2003)

    Google Scholar 

  82. Sheikhzadeh, E., Eissa, S., Ismail, A., Zourob, M.: Diagnostic techniques for COVID-19 and new developments. Talanta. 220, 121392 (2020)

    Google Scholar 

  83. Lieberman, J.A., Pepper, G., Naccache, S.N., Huang, M.-L., Jerome, K.R., Greningera, A.L.: Comparison of commercially available and laboratory-developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. J. Clin. Microbiol. 58(8), e00821–e00820 (2020)

    Google Scholar 

  84. Azzi, L., Carcano, G., Gianfagna, F., Grossi, P., Gasperina, D.D., Genoni, A., Fasano, M., Sessa, F., Tettamanti, L., Carinci, F., Maurino, V., Rossi, A., Tagliabue, A., Baj, A.: Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 81, e45–e50 (2020)

    Google Scholar 

  85. Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T.H.O., Chromikova, V., McMahon, M., Jiang, K., Arunkumar, G.A., Jurczyszak, D., Polanco, J., Bermudez-Gonzalez, M., Kleiner, G., Aydillo, T., Miorin, L., Fierer, D.S., Lugo, L.A., Kojic, E.M., Stoever, J., Liu, S.T.H., Cunningham-Rundles, C., Felgner, P.L., Moran, T., García-Sastre, A., Caplivski, D., Cheng, A.C., Kedzierska, K., Vapalahti, O., Hepojoki, J.M., Simon, V., Krammer, F.: A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. 26, 1033–1036 (2020)

    Google Scholar 

  86. Jendrny, P., Schulz, C., Twele, F., Meller, S., Köckritz-Blickwede, M., Osterhaus, A.D.M.E., Ebbers, J., Pilchová, V., Pink, I., Welte, T., Manns, M.P., Fathi, A., Ernst, C., Addo, M.M., Schalke, E., Volk, H.A.: Scent dog identification of samples from COVID-19 patients – a pilot study. BMC Infect. Dis. 20(536), 1–7 (2020)

    Google Scholar 

  87. Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Prog. Biomed. 196, 105581 (2020)

    Google Scholar 

  88. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Comput. Methods Prog. Biomed. 196, 105608 (2020)

    Google Scholar 

  89. Orive, G., Lertxundi, U., Barcelo, D.: Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ. 732, 139298 (2020)

    Google Scholar 

  90. Lesimple, A., Jasim, S.Y., Johnson, D.J., Hilal, N.: The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. J. Water Proc. Eng. 38, 101544 (2020)

    Google Scholar 

  91. Nof, S.Y.: Design of effective e-Work: review of models, tools, and emerging challenges. Product. Plan. Control. 14(8), 681–703 (2003)

    Google Scholar 

  92. Chen, X.: Error Detection and Prediction Agents and Their Algorithms. M.S. Thesis, School of Industrial Engineering, Purdue University, West Lafayette (2005)

    Google Scholar 

  93. Chen, X.W., Nof, S.Y.: Error detection and prediction algorithms: application in robotics. J. Intell. Robot. Syst. 48(2), 225–252 (2007)

    Google Scholar 

  94. Chen, X.W., Nof, S.Y.: Agent-based error prevention algorithms. Expert Syst. Appl. 39, 280–287 (2012)

    Google Scholar 

  95. Duffy, K.: Safety for profit: building an error-prevention culture. Ind. Eng. Mag. 9, 41–45 (2008)

    Google Scholar 

  96. Barber, K.S., Liu, T.H., Ramaswamy, S.: Conflict detection during plan integration for multi-agent systems. IEEE Trans. Syst. Man Cybern. B. 31(4), 616–628 (2001)

    Google Scholar 

  97. O’Hare, G.M.P., Jennings, N.: Foundations of Distributed Artificial Intelligence. Wiley, New York (1996)

    Google Scholar 

  98. Zhou, M., DiCesare, F., Desrochers, A.A.: A hybrid methodology for synthesis of Petri net models for manufacturing systems. IEEE Trans. Robot. Autom. 8(3), 350–361 (1992)

    Google Scholar 

  99. Shiau, J.-Y.: A Formalism for Conflict Detection and Resolution in a Multi-Agent System. Ph.D. Thesis, Arizona State University, Arizona (2002)

    Google Scholar 

  100. Ceroni, J.A., Velásquez, A.A.: Conflict detection and resolution in distributed design. Prod. Plan. Control. 14(8), 734–742 (2003)

    Google Scholar 

  101. Jiang, T., Nevill Jr., G.E.: Conflict cause identification in web-based concurrent engineering design system. Concurr. Eng. Res. Appl. 10(1), 15–26 (2002)

    Google Scholar 

  102. Lara, M.A., Nof, S.Y.: Computer-supported conflict resolution for collaborative facility designers. Int. J. Prod. Res. 41(2), 207–233 (2003)

    MATH  Google Scholar 

  103. Anussornnitisarn, P., Nof, S.Y.: The Design of Active Middleware for e-Work Interactions, PRISM Res. Memorandum. School of Industrial Engineering, Purdue University, West Lafayette (2001)

    Google Scholar 

  104. Anussornnitisarn, P., Nof, S.Y.: e-Work: the challenge of the next generation ERP systems. Prod. Plan. Control. 14(8), 753–765 (2003)

    Google Scholar 

  105. Chen, X.W.: Prognostics and Diagnostics of Conflicts and Errors with Prediction and Detection Logic. Ph.D. Dissertation, School of Industrial Engineering, Purdue University, West Lafayette (2009)

    Google Scholar 

  106. Yang, C.L., Nof, S.Y.: Analysis, Detection Policy, and Performance Measures of Detection Task Planning Errors and Conflicts, PRISM Res. Memorandum, 2004-P2. School of Industrial Engineering, Purdue University, West Lafayette (2004)

    Google Scholar 

  107. Avila-Soria, J.: Interactive Error Recovery for Robotic Assembly Using a Neural-Fuzzy Approach. Master Thesis, School of Industrial Engineering, Purdue University, West Lafayette (1999)

    Google Scholar 

  108. Velásquez, J.D., Lara, M.A., Nof, S.Y.: Systematic resolution of conflict situation in collaborative facility design. Int. J. Prod. Econ. 116(1), 139–153 (2008)

    Google Scholar 

  109. Nof, S.Y., Maimon, O.Z., Wilhelm, R.G.: Experiments for planning error-recovery programs in robotic work. Proc. Int. Comput. Eng. Conf. Exhib. 2, 253–264 (1987)

    Google Scholar 

  110. Imai, M., Hiraki, K., Anzai, Y.: Human-robot interface with attention. Syst. Comput. Jpn. 26(12), 83–95 (1995)

    Google Scholar 

  111. Lueth, T.C., Nassal, U.M., Rembold, U.: Reliability and integrated capabilities of locomotion and manipulation for autonomous robot assembly. Robot. Auton. Syst. 14, 185–198 (1995)

    Google Scholar 

  112. Wu, H.-J., Joshi, S.B.: Error recovery in MPSG-based controllers for shop floor control. Proc. IEEE Int. Conf. Robot. Autom. ICRA. 2, 1374–1379 (1994)

    Google Scholar 

  113. Jang, J.-S.R., Gulley, N.: Fuzzy Systems Toolbox for Use with MATLAB. The Math Works (1997)

    Google Scholar 

  114. Yee, K.W., Gavin, R.J.: Implementing Fast Probing and Error Compensation on Machine Tools, NISTIR 4447. The National Institute of Standards and Technology, Gaithersburg (1990)

    Google Scholar 

  115. Donmez, M.A., Lee, K., Liu, R., Barash, M.: A real-time error compensation system for a computerized numerical control turning center. In: Proceedings of IEEE International Conference on Robotics and Automation (1986)

    Google Scholar 

  116. Zha, X.F., Du, H.: Knowledge-intensive collaborative design modeling and support part I: review, distributed models and framework. Comput. Ind. 57, 39–55 (2006)

    Google Scholar 

  117. Zha, X.F., Du, H.: Knowledge-intensive collaborative design modeling and support part II: system implementation and application. Comput. Ind. 57, 56–71 (2006)

    Google Scholar 

  118. Klein, M., Lu, S.C.-Y.: Conflict resolution in cooperative design. Artif. Intell. Eng. 4(4), 168–180 (1989)

    Google Scholar 

  119. Klein, M.: Supporting conflict resolution in cooperative design systems. IEEE Trans. Syst. Man Cybern. 21(6), 1379–1390 (1991)

    Google Scholar 

  120. Klein, M.: Capturing design rationale in concurrent engineering teams. IEEE Comput. 26(1), 39–47 (1993)

    Google Scholar 

  121. Klein, M.: Conflict management as part of an integrated exception handling approach. Artif. Intell. Eng. Des. Anal. Manuf. 9, 259–267 (1995)

    Google Scholar 

  122. Li, X., Zhou, X.H., Ruan, X.Y.: Study on conflict management for collaborative design system. J. Shanghai Jiaotong Univ. (English ed.). 5(2), 88–93 (2000)

    Google Scholar 

  123. Li, X., Zhou, X.H., Ruan, X.Y.: Conflict management in closely coupled collaborative design system. Int. J. Comput. Integr. Manuf. 15(4), 345–352 (2000)

    Google Scholar 

  124. Huang, C.Y., Ceroni, J.A., Nof, S.Y.: Agility of networked enterprises: parallelism, error recovery and conflict resolution. Comput. Ind. 42, 73–78 (2000)

    Google Scholar 

  125. Nof, S.Y.: Tools and models of e-work. In: Proceedings of 5th International Conference on Simulation AI, Mexico City, pp. 249–258 (2000)

    Google Scholar 

  126. Nof, S.Y.: Collaborative e-work and e-manufacturing: challenges for production and logistics managers. J. Intell. Manuf. 17(6), 689–701 (2006)

    Google Scholar 

  127. Sycara, K.: Negotiation planning: an AI approach. Eur. J. Oper. Res. 46(2), 216–234 (1990)

    Google Scholar 

  128. Fang, L., Hipel, K.W., Kilgour, D.M.: Interactive Decision Making. Wiley, New York (1993)

    Google Scholar 

  129. Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Google Scholar 

  130. Kusiak, A., Wang, J.: Dependency analysis in constraint negotiation. IEEE Trans. Syst. Man Cybern. 25(9), 1301–1313 (1995)

    Google Scholar 

  131. Jiang, Z., Ouyang, Y.: Reliable location of first responder stations for cooperative response to disasters. Transp. Res. B Methodol. 149, 20–32 (2021)

    Google Scholar 

  132. Zhong, H., Nof, S.Y.: Dynamic Lines of Collaboration – Disruption Handling & Control Automation, Collaboration, and E-Services (ACES) Book Series. Springer (2020)

    Google Scholar 

  133. Nguyen, W.P.V., Nof, S.Y.: Strategic lines of collaboration in response to disruption propagation (CRDP) through cyber-physical systems. Int. J. Prod. Econ. 230 (2020)

    Google Scholar 

  134. Li, D., Yu, Q., Ding, Y., Wang, N., Hu, F., Jia, R., Peng, L., Rao, B., Hu, Q., Jin, H., Li, M., Zhu, L.: Disruption prevention using rotating resonant magnetic perturbation on J-TEXT. Nucl. Fusion. 60(5), 056022 (2020)

    Google Scholar 

  135. Pau, A., Fanni, A., Carcangiu, S., Cannas, B., Sias, G., Murari, A., Rimini, F.: A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET. Nucl. Fusion. 59(1022), 106017 (2019)

    Google Scholar 

  136. Strait, E.J., Barr, J.L., Baruzzo, M., Berkery, J.W., Buttery, R.J., De Vries, P.C., Eidietis, N.W., Granetz, R.S., Hanson, J.M., Holcomb, C.T., Humphreys, D.A., Kim, J.H.: Progress in disruption prevention for ITER. Nucl. Fusion. 59(115), 112012 (2019)

    Google Scholar 

  137. Wang, W., Xue, K., Sun, X.: Cost sharing in the prevention of supply chain disruption. Math. Probl. Eng. 2017, 7843465 (2017)

    MathSciNet  MATH  Google Scholar 

  138. Burggraef, P., Wagner, J., Dannapfel, M., Vierschilling, S.P.: Simulating the benefit of disruption prevention in assembly. J. Model. Manag. 14(1), 214–231 (2019)

    Google Scholar 

  139. Burggraf, P., Wagner, J., Luck, K., Adlon, T.: Cost-benefit analysis for disruption prevention in low-volume assembly. Prod. Eng. 11(3), 331–3421 (2017)

    Google Scholar 

  140. Taylor, R.S.: Ice-related disruptions to ferry services in Eastern Canada: prevention and consequence mitigation strategies. Transp. Res. Procedia. 25, 279–290 (2017)

    Google Scholar 

  141. Tkach, I., Edan, Y., Nof, S.Y.: Multi-sensor task allocation framework for supply networks security using task administration protocols. Int. J. Prod. Res. 55(18), 5202–5224 (2017)

    Google Scholar 

  142. Nguyen, W.P.V., Nof, S.Y.: Resilience informatics for cyber-augmented manufacturing networks (CMN): centrality, flow, and disruption. Stud. Inf. Control. 27(4), 377–384 (2018)

    Google Scholar 

  143. Reyes Levalle, R.: Resilience by Teaming in Supply Chains and Networks Automation, Collaboration, and E-Services (ACES) Book Series. Springer (2018)

    Google Scholar 

  144. Ajidarma, P., Nof, S.Y.: Collaborative detection and prevention of errors and conflicts in an agricultural robotic system. Stud. Inf. Control. 30(1), 19–28 (2021)

    Google Scholar 

  145. Solomonoff, R., Rapoport, A.: Connectivity of random nets. Bull. Mater. Biophys. 13, 107–117 (1951)

    MathSciNet  Google Scholar 

  146. Erdos, P., Renyi, A.: On random graphs. Publ. Math. Debr. 6, 290–291 (1959)

    MATH  Google Scholar 

  147. Erdos, P., Renyi, A.: On the evolution of random graphs. Magy. Tud. Akad. Mat. Kutato Int. Kozl. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  148. Erdos, P., Renyi, A.: On the strenth of connectedness of a random graph. Acta Mater. Acad. Sci. Hung. 12, 261–267 (1961)

    MATH  Google Scholar 

  149. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature. 393(6684), 440–442 (1998)

    MATH  Google Scholar 

  150. Albert, R., Jeong, H., Barabasi, A.L.: Internet: diameter of the world-wide web. Nature. 401(6749), 130–131 (1999)

    Google Scholar 

  151. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science. 286(5439), 509–512 (1999)

    MathSciNet  MATH  Google Scholar 

  152. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web. Comput. Netw. 33(1), 309–320 (2000)

    Google Scholar 

  153. de Solla Price, D.J., Networks of scientific papers: Science. 149, 510–515 (1965)

    Google Scholar 

  154. Bianconi, G., Barabasi, A.L.: Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86(24), 5632–5635 (2001)

    Google Scholar 

  155. Nof, S.Y.: Collaborative control theory for e-work, e-production, and e-service. Annu. Rev. Control. 31(2), 281–292 (2007)

    Google Scholar 

  156. Chen, X.W.: Knowledge-based analytics for massively distributed networks with noisy data. Int. J. Prod. Res. 56(8), 2841–2854 (2018)

    Google Scholar 

  157. Chen, X.W., Nof, S.Y.: Constraint-based conflict and error management. Eng. Optim. 44(7), 821–841 (2012)

    MathSciNet  Google Scholar 

  158. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inf. 11(3), 812–820 (2014)

    Google Scholar 

  159. Nikolopoulos, K., Punia, S., Schäfers, A., Tsinopoulos, C., Vasilakis, C.: Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions. Eur. J. Oper. Res. 290(1), 99–115 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin W. Chen or Shimon Y. Nof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, X.W., Nof, S.Y. (2023). Automating Prognostics and Prevention of Errors, Conflicts, and Disruptions. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_22

Download citation

Publish with us

Policies and ethics