Skip to main content

Predicting Taxi Travel Time Using Machine Learning Techniques Considering Weekend and Holidays

  • Conference paper
  • First Online:
Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021) (SoCPaR 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 417))

Included in the following conference series:

Abstract

This paper investigates the application of a set of machine learning algorithms to predict the time that will be spent inside a vehicle between any two locations. The ride duration is estimated by analyzing data collected from historical traces of taxis, i.e., Jan 2015 New York City (NYC) Yellow Cab trip record data. Moreover, the taxi data is integrated with Uber dataset to estimate time accurately taking into account a set of semantic variables. Nevertheless, these semantic variables are selected through outlier detection and feature selection using Chi-Square scores. Features such as pick-up latitude and longitude, drop-off latitude and longitude, pick-up date, pick-up time, etc., are considered for prediction purposes in NYC dataset. Mainly, the forecasting effectiveness is compared for three machine learning models, namely, Decision Tree Regression (DTR), Random Forest Regression (RFR), and K-Nearest Neighbor Regression (KNNR). It is found that RFR and KNNR are the favorites for this travel time prediction. Also, our result supersedes the best performance of Kaggle competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, M., Lin, Y., Ma, M., Wang, P.: Travel-time prediction methods: a review. In: Qiu, M. (ed.) SmartCom 2018. LNCS, vol. 11344, pp. 67–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05755-8_7

    Chapter  Google Scholar 

  2. Carrese, S., Cipriani, E., Crisalli, U., Gemma, A., Mannini, L.: Bluetooth traffic data for urban travel time forecast. Transp. Res. Proc. 52(2020), 236–243 (2021)

    Google Scholar 

  3. Chen, M., Chien, S.I.J.: Dynamic freeway travel-time prediction with probe vehicle data. Transp. Res. Rec. 1768(01), 157–161 (2001)

    Article  Google Scholar 

  4. Deb Nath, R.P., Lee, H.-J., Chowdhury, N.K., Chang, J.-W.: Modified K-means clustering for travel time prediction based on historical traffic data. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010. LNCS (LNAI), vol. 6276, pp. 511–521. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15387-7_55

    Chapter  Google Scholar 

  5. Orare, E.M.: Travel time prediction model for Nairobi city: an application of machine learning algorithms. Ph.D. thesis (2019)

    Google Scholar 

  6. Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M.: Traveling time prediction in scheduled transportation with journey segments. Inf. Syst. 64, 266–280 (2017)

    Article  Google Scholar 

  7. Gaweł, P., Jaszkiewicz, A.: Improving short-term travel time prediction for on-line car navigation by linearly transforming historical traffic patterns to fit the current traffic conditions. Procedia. Soc. Behav. Sci. 20, 638–647 (2011)

    Article  Google Scholar 

  8. Huang, H., Pouls, M., Meyer, A., Pauly, M.: Travel time prediction using tree-based ensembles. In: Lalla-Ruiz, E., Mes, M., Voß, S. (eds.) ICCL 2020. LNCS, vol. 12433, pp. 412–427. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59747-4_27

    Chapter  Google Scholar 

  9. Huang, Y.P., et al.: Bus arrival time prediction and reliability analysis: an experimental comparison of functional data analysis and Bayesian support vector regression. Appl. Soft Comput. 111, 107663 (2021)

    Article  Google Scholar 

  10. Jamous, W., Balijepalli, C.: Assessing travel time reliability implications due to roadworks on private vehicles and public transport services in urban road networks. J. Traffic Transp. Eng. (Engl. Edn.) 5(4), 296–308 (2018)

    Google Scholar 

  11. Jiménez-Meza, A., Arámburo-Lizárraga, J., de la Fuente, E.: Framework for estimating travel time, distance, speed, and street segment level of service (LOS), based on GPS data. Proc. Technol. 7, 61–70 (2013)

    Article  Google Scholar 

  12. Kaggle: Kaggle Leader Board for New York City Taxi Trip Duration Prediction, July 2017. https://www.kaggle.com/c/nyc-taxi-trip-duration/leaderboard. Accessed November 2021

  13. Kaggle: New York City Taxi Trip Duration, July 2017. https://www.kaggle.com/c/nyc-taxi-trip-duration. Accessed October 2021

  14. Li, Y., Gunopulos, D., Lu, C., Guibas, L.J.: Personalized travel time prediction using a small number of probe vehicles. ACM Trans. Spat. Algorithms Syst. 5(1), 1–27 (2019)

    Article  Google Scholar 

  15. Lim, S.H., Kim, Y., Lee, C.: Real-time travel-time prediction method applying multiple traffic observations. KSCE J. Civ. Eng. 20(7), 2920–2927 (2016). https://doi.org/10.1007/s12205-016-0239-5

    Article  Google Scholar 

  16. Ma, X., Al Khoury, F., Jin, J.: Prediction of arterial travel time considering delay in vehicle re-identification. Transp. Res. Proc. 22, 625–634 (2017)

    Google Scholar 

  17. Maass, K., Sathanur, A.V., Khan, A., Rallo, R.: Street-level Travel-time estimation via aggregated Uber data. In: 2020 Proceedings of the SIAM Workshop on Combinatorial Scientific Computing, pp. 76–84 (2020)

    Google Scholar 

  18. Petersen, N.C., Rodrigues, F., Pereira, F.C.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019)

    Article  Google Scholar 

  19. Rodriguez-Deniz, H., Jenelius, E., Villani, M.: Urban network travel time prediction via online multi-output Gaussian process regression. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2018-March, pp. 1–6 (2018)

    Google Scholar 

  20. Safikhani, A., Kamga, C., Mudigonda, S., Faghih, S.S., Moghimi, B.: Spatio-temporal modeling of yellow taxi demands in New York City using generalized STAR models. Int. J. Forecast. 36(3), 1138–1148 (2020)

    Article  Google Scholar 

  21. Scikit Learn: Scikit-learn: machine learning in Python, September 2021. https://scikit-learn.org/stable/. Accessed October 2021

  22. Shahee, S.A., Ananthakumar, U.: An overlap sensitive neural network for class imbalanced data. Data Min. Knowl. Disc. 35(4), 1654–1687 (2021). https://doi.org/10.1007/s10618-021-00766-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Taghipour, H., Parsa, A.B., Mohammadian, A.K.: A dynamic approach to predict travel time in real time using data driven techniques and comprehensive data sources. Transp. Eng. 2(July), 100025 (2020)

    Google Scholar 

  24. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  25. Zhan, X., Ukkusuri, S.V., Yang, C.: A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data. Autom. Constr. 72, 237–246 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, B., Rout, D. (2022). Predicting Taxi Travel Time Using Machine Learning Techniques Considering Weekend and Holidays. In: Abraham, A., et al. Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021). SoCPaR 2021. Lecture Notes in Networks and Systems, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-030-96302-6_24

Download citation

Publish with us

Policies and ethics