Skip to main content

The Golden Ratio of Area Method Based on Fuzzy Number Area as a Defuzzyfier

  • Conference paper
  • First Online:
Uncertainty and Imprecision in Decision Making and Decision Support: New Advances, Challenges, and Perspectives (IWIFSGN 2020, BOS/SOR 2020)

Abstract

This article presents a new method of focusing, which may be implemented in fuzzy controllers. The peculiarity of the proposed method is the use of an universal solution in the form of Golden Ratio and the widely applied method of the centre of gravity. The traditional methods of defuzzying, such as: MOM, FOM, LOM, COG, BADD and many others are used in many fields, however they are not universal solutions. This conclusion enables the author of this paper to present a new solution that we refer to as the Golden Ratio of Area, in abbreviation: GRoA. To verify the efficiency of the GRoA method, the results are compared to existing defuzzying methods. An example of use is the controller process solution of the combustion process, for which only the resulting membership function is presented. To determine the fitness of this method, the measure of dispersion was used as standard deviation. The analysis of methods leads to the conclusion that there are cases that significantly deviate from central values and should be eliminated in the control. Another conclusion is that the application of a pattern other than central value will enable a surer selection of defuzzying methods. The analysis shows that the GRoA method works properly and may be used in fuzzy controller. In the last section, the author presents further propositions of research, for example ordered fuzzy numbers (OFN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-7908-1870-3_1

    Book  MATH  Google Scholar 

  2. Baumgart, J.: Implementation of a test environment in R. Stud. Mater. Appl. Comput. Sci. (ISSN 1689-6300) 11(1), 19–24 (2019)

    Google Scholar 

  3. Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.K., Stanley, H.E.: Fractals in biology and medicine: from DNA to the heartbeat. In: Bunde, A., Havlin, S. (eds.) Fractals in Science, pp. 49–88. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-77953-4_3

    Chapter  Google Scholar 

  4. Campanile, L., Iacono, M., Marulli, F., Mastroianni, M., Mazzocca, N.: Toward a fuzzy-based approach for computational load offloading of IoT devices. J. Univ. Comput. Sci. 26(11), 1455–1474 (2020)

    Google Scholar 

  5. Castro, J.L.: Fuzzy logic controllers are universal approximators. IEEE Trans. Syst. Man Cybern. 25(4), 629–635 (1995)

    Article  Google Scholar 

  6. Chandramohan, A., Rao, M., Arumugam, M.S.: Two new and useful defuzzification methods based on root mean square value. Soft. Comput. 10(11), 1047–1059 (2006)

    Article  Google Scholar 

  7. Czerniak, J.M., Dobrosielski, W.T., Apiecionek, Ł., Ewald, D.: Representation of a trend in OFN during fuzzy observance of the water level from the crisis control center. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 443–447. IEEE (2015)

    Google Scholar 

  8. Dobrosielski, W.T., Szczepański, J., Zarzycki, H.: A proposal for a method of defuzzification based on the golden ratio-GR. In: Atanassov, K., et al. (eds.) Novel Developments in Uncertainty Representation and Processing, vol. 401, pp. 75–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_7

    Chapter  Google Scholar 

  9. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978)

    Article  MathSciNet  Google Scholar 

  10. Dunlap, R.A.: The Golden Ratio and Fibonacci Numbers. World Scientific, New Jersey (1997)

    Book  Google Scholar 

  11. Dyczkowski, K.: Cardinalities of interval-valued fuzzy sets and their applications in decision making with imperfect information. In: Intelligent Medical Decision Support System Based on Imperfect Information. SCI, vol. 735, pp. 55–93. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67005-8_4

    Chapter  Google Scholar 

  12. Ewald, D., Zarzycki, H., Apiecionek, Ł., Czerniak, J.M.: Ordered fuzzy numbers applied in bee swarm optimization systems 26(11), 1475–1494 (2020). http://www.jucs.org/jucs_26_11/ordered_fuzzy_numbers_applied

  13. Filev, D.P., Yager, R.R.: A generalized defuzzification method via bad distributions. Int. J. Intell. Syst. 6(7), 687–697 (1991)

    Article  Google Scholar 

  14. Kacprzyk, J., Yager, R.R., Merigo, J.M.: Towards human-centric aggregation via ordered weighted aggregation operators and linguistic data summaries: a new perspective on zadeh’s inspirations. IEEE Comput. Intell. Mag. 14(1), 16–30 (2019)

    Article  Google Scholar 

  15. Kacprzyk, J.: Dynamic programming with imprecise and uncertain information. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds.) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, pp. 387–422, vol. 296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48587-0_13

  16. Kacprzyk, J., Zadrożny, S.: Supporting consensus reaching processes under fuzzy preferences and a fuzzy majority via linguistic summaries. In: Greco, S., Marques Pereira, R.A., Squillante, M., Yager, R.R., Kacprzyk, J. (eds.) Preferences and Decisions. Studies in Fuzziness and Soft Computing, vol. 257, pp. 261–279. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15976-3_15

    Chapter  MATH  Google Scholar 

  17. Kopowski, J., Rojek, I., Mikolajewski, D., Macko, M.: Bydgostian hand exoskeleton - concept and preliminary findings. Stud. Mater. Appl. Comput. Sci. 12(1), 22–28 (2020). ISSN 1689-6300

    Google Scholar 

  18. Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets Syst. 108(2), 159–178 (1999). https://www.sciencedirect.com/science/article/pii/S0165011497003370

  19. Molnár, J., Gans, Slavko, O.: Design and implementation self-balancing robot. In: 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), pp. 1–4 (2020)

    Google Scholar 

  20. Pfluger, N., Yen, J., Langari, R.: A defuzzification strategy for a fuzzy logic controller employing prohibitive information in command formulation. In: [1992 Proceedings] IEEE International Conference on Fuzzy Systems, pp. 717–723. IEEE (1992)

    Google Scholar 

  21. Piegat, A., Tomaszewska, M.: Defuzzification with optimal representation method. Przegląd Elektrotechniczny 1, 110–113 (2017)

    Article  Google Scholar 

  22. Piegat, A., Tomaszewska, K.: Optimal representation (ORD) method of intuitionistic fuzzy defuzzification. In: Atanassov, K.T., et al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: Cross-Fertilization, New Models and Applications. AISC, pp. 71–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65545-1_8

    Chapter  Google Scholar 

  23. Prokopowicz, P.: The use of ordered fuzzy numbers for modelling changes in dynamic processes. Inf. Sci. 470, 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  24. Prokopowicz, P., Mikołajewski, D., Tyburek, K., Kotlarz, P.: Fuzzy-based description of computational complexity of central nervous systems. J. Telecommun. Inf. Technol. 3, 57–66 (2020)

    Google Scholar 

  25. Reznik, L., Ghanayem, O., Bourmistrov, A.: PID plus fuzzy controller structures as a design base for industrial applications. Eng. Appl. Artif. Intell. 13(4), 419–430 (2000)

    Article  Google Scholar 

  26. Rondeau, L., Ruelas, R., Levrat, L., Lamotte, M.: A defuzzification method respecting the fuzzification. Fuzzy Sets Syst. 86(3), 311–320 (1997). http://www.sciencedirect.com/science/article/pii/S0165011495003991

  27. Ross, T.J., et al.: Fuzzy Logic with Engineering Applications, vol. 2. Wiley, New York (2004)

    MATH  Google Scholar 

  28. Roychowdhury, S., Pedrycz, W.: A survey of defuzzification strategies. Int. J. Intell. Syst. 16(6), 679–695 (2001)

    Article  Google Scholar 

  29. Runkler, T.A.: Extended defuzzification methods and their properties. In: Proceedings of IEEE 5th International Fuzzy Systems, vol. 1, pp. 694–700 (1996)

    Google Scholar 

  30. Runkler, T.A.: Selection of appropriate defuzzification methods using application specific properties. IEEE Trans. Fuzzy Syst. 5(1), 72–79 (1997)

    Article  Google Scholar 

  31. Runkler, T.A., Glesner, M.: A set of axioms for defuzzification strategies towards a theory of rational defuzzification operators. In: [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1161–1166 (1993)

    Google Scholar 

  32. Ruusunen, M., Leiviskä, K.: Fuzzy modelling of carbon dioxide in a burning process. Control. Eng. Pract. 12(5), 607–614 (2004)

    Article  Google Scholar 

  33. Saade, J.J., Diab, H.B.: Defuzzification techniques for fuzzy controllers. IEEE Trans. Syst. Man Cybernet. B (Cybernetics) 30(1), 223–229 (2000)

    Article  Google Scholar 

  34. Sánchez-Solano, S., Barriga, A., Jiménez, C., Huertas, J.: Design and application of digital fuzzy controllers. In: Proceedings of 6th International Fuzzy Systems Conference, vol. 2, pp. 869–874. IEEE (1997)

    Google Scholar 

  35. Talon, A., Curt, C.: Selection of appropriate defuzzification methods: application to the assessment of dam performance. Expert Syst. Appl. 70, 160–174 (2017)

    Article  Google Scholar 

  36. Wang, Y.M.: Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets. Comput. Ind. Eng. 57(1), 228–236 (2009)

    Article  Google Scholar 

  37. Wang, Y., Shi, P., Yan, H.: Reliable control of fuzzy singularly perturbed systems and its application to electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 65(10), 3519–3528 (2018)

    Article  MathSciNet  Google Scholar 

  38. Yager, R.R., Filev, D.: On the issue of defuzzification and selection based on a fuzzy set. Fuzzy Sets Syst. 55(3), 255–271 (1993). http://www.sciencedirect.com/science/article/pii/016501149390252D

  39. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  40. Zarzycki, H., Dobrosielski, W., Apiecionek, Ł., Vince, T.: Center of circles intersection, a new defuzzification method for fuzzy numbers. Bull. Pol. Acad. Sci. Tech. Sci. 68(2) (2020)

    Google Scholar 

  41. Zarzycki, H., Apiecionek, Ł., Czerniak, J.M., Ewald, D.: The proposal of fuzzy observation and detection of massive data DDOS attack threat. In: Atanassov, K.T., et al. (eds.) Uncertainty and Imprecision in Decision Making and Decision Support: New Challenges, Solutions and Perspectives. AISC, vol. 1081, pp. 363–378. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-47024-1_34

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech T. Dobrosielski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrosielski, W.T. (2022). The Golden Ratio of Area Method Based on Fuzzy Number Area as a Defuzzyfier. In: Atanassov, K.T., et al. Uncertainty and Imprecision in Decision Making and Decision Support: New Advances, Challenges, and Perspectives. IWIFSGN BOS/SOR 2020 2020. Lecture Notes in Networks and Systems, vol 338. Springer, Cham. https://doi.org/10.1007/978-3-030-95929-6_8

Download citation

Publish with us

Policies and ethics