Skip to main content

Analytical Approaches to Assessment of Phospholipid Metabolism in Physiology and Pathology

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Among cellular molecules, lipids constitute an important group of macromolecules classified according to their chemical structure and function. Characterization of the entire lipidome is a great challenge, not only due to the structural diversity of lipids but also large number of species. Phospholipids play a key structural and functional role in biological membranes since the phospholipid bilayer serves as a platform for proteins involved in cell signaling, and phospholipids support key metabolic cellular processes. The identification and quantification of phospholipids and products of their metabolism biological material requires the use of sensitive analytical techniques. Lipidomic analysis requires a number of steps, including extraction from a biological matrix, classifying by derivatization, and ending with the analysis of the data obtained. However, these analyses enable the identification of the molecular mechanisms mediated by phospholipids and indicate their metabolites as potential disease biomarkers. This chapter indicates the advantages and disadvantages of various modern analytical approaches, mainly based on the combination of chromatographic techniques with mass spectrometry, currently used to characterize phospholipids and their metabolites resulting from peroxidation (α, β-unsaturated aldehydes and isoprostanes) and enzymatic oxidation of fatty acids (endocannabinoids and eicosanoids). Moreover, tips and pitfalls of the classical quantitative and large-scale analyses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lydic, T. A., & Goo, Y.-H. (2018). Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clinical and Translational Medicine, 7(1), 4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li, M., Yang, L., Bai, Y., & Liu, H. (2014). Analytical methods in lipidomics and their applications. Analytical Chemistry, 86, 161–175.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, M., Wang, C., & Han, X. (2017). Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-what, how and why? Mass Spectrometry Reviews, 36(6), 693–714.

    Article  PubMed  CAS  Google Scholar 

  4. Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Girotti, A. W., & Korytowski, W. (2016). Reactions of singlet oxygen with membrane lipids: Lipid hydroperoxide generation, translocation, reductive turnover, and signaling activity. In S. Nonell & C. Flors (Eds.), Singlet oxygen: Applications in biosciences and nanosciences (Vol. 1, pp. 409–430). RSC Publishing.

    Chapter  Google Scholar 

  6. Łuczaj, W., Moniuszko, A., Jarocka-Karpowicz, I., et al. (2016). Tick-borne encephalitis – Lipid peroxidation and its consequences. Scandinavian Journal of Clinical and Laboratory Investigation, 76(1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  7. Łuczaj, W., Gindzienska-Sieskiewicz, E., Jarocka-Karpowicz, I., et al. (2016). The onset of lipid peroxidation in rheumatoid arthritis: Consequences and monitoring. Free Radical Research, 50, 304–313.

    Article  PubMed  CAS  Google Scholar 

  8. Galano, J. M., Lee, Y. Y., Oger, C., et al. (2017). Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25 years of research in chemistry and biology. Progress in Lipid Research, 68, 83–108.

    Article  CAS  PubMed  Google Scholar 

  9. Chanda, D., Neumann, D., & Glatz, J. F. C. (2019). The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 140, 51–56.

    Article  CAS  PubMed  Google Scholar 

  10. Mouchlis, V. D., & Dennis, E. A. (2019). Phospholipase A2 catalysis and lipid mediator lipidomics. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids, 1864, 766–771.

    Article  CAS  PubMed  Google Scholar 

  11. Bystrická, Z., & Ďuračková, Z. (2016). Gas chromatography determination of fatty acids in the human erythrocyte membranes – A review. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 115, 35–40.

    Article  PubMed  CAS  Google Scholar 

  12. Dołowy, M., & Pyka, A. (2015). Chromatographic methods in the separation of long-chain mono- and polyunsaturated fatty acids. Journal of Chemistry, 2015(120830), 1–20.

    Article  CAS  Google Scholar 

  13. Vale, G., Martin, S. A., Mitsche, M. A., et al. (2019). Three phase liquid extraction (3PLE) – A simple, and fast method for lipidomic workflows. Journal of Lipid Research, 60(3), 694–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bylda, C., Thiele, R., Kobold, U., & Volmer, D. A. (2014). Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst, 139, 2265–2276.

    Article  CAS  PubMed  Google Scholar 

  15. Breil, C., Vian, M. A., Zemb, T., et al. (2017). “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences, 18(4), pii: E708.

    Article  CAS  Google Scholar 

  16. Burla, B., Arita, M., & Arita, M. (2018). MS-based lipidomics of human blood plasma:A community-initiated position paper to develop accepted guidelines. Journal of Lipid Research, 59, 2001–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zivkovic, A. M., Wiest, M. M., Nguyen, U. T., et al. (2009). Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics, 5(4), 507–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deranieh, R. M., Joshi, A. S., & Greenberg, M. L. (2013). Thin-layer chromatography of phospholipids. In D. Rapaport & J. M. Herrmann (Eds.), Membrane biogenesis. Methods and protocols (pp. 21–27). Humana Press.

    Chapter  Google Scholar 

  19. Johnston, M. R., & Sobhi, H. F. (2017). Advances in fatty acid analysis for clinical investigation and diagnosis using GC/MS methodology. Journal of Biochemistry and Analytical Studies, 3(1), 1–11.

    Google Scholar 

  20. Wang, M., Wang, C., Han, R. H., & Han, X. (2016). Novel advances in shotgun lipidomics for biology and medicine. Progress in Lipid Research, 61, 83–108.

    Article  CAS  PubMed  Google Scholar 

  21. Berry, K. A. Z., Barkley, R. M., Berry, J. J., et al. (2016). Tandem mass spectrometry in combination with product ion mobility for the identification of phospholipids. Analytical Chemistry, 89(1), 916–921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pulfer, M., & Murphy, R. C. (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrometry Reviews, 22(5), 332–364.

    Article  CAS  PubMed  Google Scholar 

  23. Tsoukalas, D., Alegakis, A. K., Fragkiadaki, P., et al. (2018). Application of metabolomics part II: Focus on fatty acids and their metabolites in healthy adults. International Journal of Molecular Medicine, 43(1), 1–10.

    Google Scholar 

  24. Christinat, N., Morin-Rivron, D., & Masoodi, M. (2016). High-throughput quantitative lipidomics analysis of nonesterified fatty acids in human plasma. Journal of Proteome Research, 15, 2228–2235.

    Article  CAS  PubMed  Google Scholar 

  25. Mok, H. J., Lee, J. W., Bandu, R., et al. (2016). A rapid and sensitive profiling of free fatty acids using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical derivatization. RSC Advances, 6, 32130–32139.

    Article  CAS  Google Scholar 

  26. Seeley, J. V., & Seeley, S. K. (2013). Multidimensional gas chromatography: Fundamental advances and new applications. Analytical Chemistry, 85, 557–578.

    Article  CAS  PubMed  Google Scholar 

  27. Hancu, G., Tero-Vescan, A., Filip, C., & Rusu, A. (2018). Capillary electrophoresis in the enantioseparation of modern antidepressants: An overview. Biomedical Chromatography, 32(11), e4335.

    Article  PubMed  CAS  Google Scholar 

  28. Barrera, G., Pizzimenti, S., Daga, M., et al. (2018). Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants, 7(8), pii: E102.

    Article  CAS  Google Scholar 

  29. Łuczaj, W., Domingues, P., Domingues, M. R., et al. (2017). Phospholipidomic analysis reveals changes in sphingomyelin and lysophosphatidylcholine profiles in plasma from patients with neuroborreliosis. Lipids, 52, 93–98.

    Article  PubMed  CAS  Google Scholar 

  30. Jadoon, S., & Malik, A. (2018). A comprehensive review article on isoprostanes as biological markers. Biochemical Pharmacology, 7(246), 1–8.

    Google Scholar 

  31. Sousa, B. C., Pitt, A. R., & Spickett, C. M. (2017). Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds. Free Radical Biology & Medicine, 111, 294–308.

    Article  CAS  Google Scholar 

  32. Spickett, C. M., Wiswedel, I., Siems, W., et al. (2010). Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radical Research, 44(10), 1172–1202.

    Article  CAS  PubMed  Google Scholar 

  33. Zelzer, S., Mangge, H., Oberreither, R., et al. (2015). Oxidative stress: Determination of 4-hydroxy-2-nonenal by gas chromatography/mass spectrometry in human and rat plasma. Free Radical Research, 49(10), 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  34. Tsikas, D., Rothmann, S., Schneider, J. Y., et al. (2017). Simultaneous GC-MS/MS measurement of malondialdehyde and 4-hydroxy-2-nonenal in human plasma: Effects of long-term L-arginine administration. Analytical Biochemistry, 524, 31–44.

    Article  CAS  PubMed  Google Scholar 

  35. Spickett, C. M. (2013). The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biology, 1, 145–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Domijan, A. M., Ralić, J., Radić, B. S., et al. (2015). Quantification of malondialdehyde by HPLC-FL–application to various biological samples. Biomedical Chromatography, 29(1), 41–46.

    Article  CAS  PubMed  Google Scholar 

  37. Kuda, O. (2017). Bioactive metabolites of docosahexaenoic acid. Biochimie, 136, 12–20.

    Article  CAS  PubMed  Google Scholar 

  38. Marchioni, C., de Souza, I. D., Acquaro, V. R., et al. (2018). Recent advances in LC-MS/MS methods to determine endocannabinoids in biological samples: Application in neurodegenerative diseases. Analytica Chimica Acta, 1044, 12–28.

    Article  CAS  PubMed  Google Scholar 

  39. Luque-Córdoba, D., Calderón-Santiago, M., Luque de Castro, M. D., & Priego-Capote, F. (2018). Study of sample preparation for determination of endocannabinoids and analogous compounds in human serum by LC-MS/MS in MRM mode. Talanta, 185, 602–610.

    Article  PubMed  CAS  Google Scholar 

  40. Zoerner, A. A., Gutzki, F. M., Batkai, S., et al. (2011). Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: A comprehensive review from an analytical and biological perspective. Biochimica et Biophysica Acta, 1811(11), 706–723.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, J., Gouveia-Figueira, S., Domellöf, M., et al. (2016). Oxylipins, endocannabinoids, and related compounds in human milk: Levels and effects of storage conditions. Prostaglandins & Other Lipid Mediators, 122, 28–36.

    Article  CAS  Google Scholar 

  42. Sergi, M., Battista, N., Montesano, C., et al. (2013). Determination of the two major endocannabinoids in human plasma by μ-SPE followed by HPLC-MS/MS. Analytical and Bioanalytical Chemistry, 405, 785–793.

    Article  CAS  PubMed  Google Scholar 

  43. Thakare, R., Chhonker, Y. S., Gautam, N., et al. (2018). Simultaneous LC-MS/MS analysis of eicosanoids and related metabolites in human serum, sputum and BALF. Biomedical Chromatography, 32(3), 1–27.

    Article  CAS  Google Scholar 

  44. Liakh, I., Pakiet, A., Sledzinski, T., & Mika, A. (2019). Modern methods of sample preparation for the analysis of oxylipins in biological samples. Molecules, 25, 24–31.

    CAS  Google Scholar 

  45. Kendall, A. C., Pilkington, S. M., Massey, K. A., et al. (2015). Distribution of bioactive lipid mediators in human skin. The Journal of Investigative Dermatology, 135(6), 1510–1520.

    Article  CAS  PubMed  Google Scholar 

  46. Gandhi, A. S., Budac, D., Khayrullina, T., et al. (2017). Quantitative analysis of lipids: A higher-throughput LC-MS/MS-based method and its comparison to ELISA. Future Science OA, 3(1), FSO157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puppolo, M., Varma, D., & Jansen, S. A. (2014). A review of analytical methods for eicosanoids in brain tissue. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 964, 50–64.

    Article  CAS  PubMed  Google Scholar 

  48. Chhonker, Y. S., Bala, V., & Murry, D. J. (2018). Quantification of eicosanoids and their metabolites in biological matrices: A review. Bioanalysis, 10(24), 2027–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Donnell, V. B., Maskrey, B., & Taylor, G. W. (2009). Eicosanoids: Generation and detection in mammalian cells. In B. Larijani, R. Woscholski, & C. A. Rosser (Eds.), Lipid signaling protocols (pp. 1–19). Humana Press.

    Google Scholar 

  50. Deems, R., Buczynski, M. W., Bowers-Gentry, R., et al. (2007). Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Methods in Enzymology, 432, 59–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Skrzydlewska .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Łuczaj, W., Biernacki, M., Jarocka-Karpowicz, I., Skrzydlewska, E. (2022). Analytical Approaches to Assessment of Phospholipid Metabolism in Physiology and Pathology. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_6

Download citation

Publish with us

Policies and ethics