Skip to main content

Recent Advances in the Forensic Dating of Blood Traces: A Minireview

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

The conviction that traces, revealed during the examination of the crime scene, are a testimony of the committed deeds is one of the pillars of modern forensic science. Among these traces is a group of evidence, which often acts as a main driving force behind the investigation process. Blood evidence – referred to above – cannot be wrong, as it does not forget or succumb to emotions, and the only factor that can diminish bloodstains’ evidential value are difficulties encountered while under investigation and interpretation. Unfortunately, the forensic arsenal of analytical methods enabling this examination is still incomplete. Modern forensic knowledge, which allows for such a comprehensive exploitation of bloodstain patterns, does not make full use of the information “recorded” in them. This is because, to date, no credible tool for estimating time elapsed since bloodstain deposition has been established. Since forensic scientists are well aware of the urgent need to develop a method capable of predicting the “age” of blood trace, a dramatic increase in interest for forensic dating studies has been observed. Over the past years (2010–2018), some noteworthy solutions have been delivered; thus, the objective of the following chapter is to provide a minireview of recently developed bloodstain dating methods, with a particular attention given to spectroscopy-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. James, S. H., Kish, P. E., & Sutton, T. P. (2005). Introduction to bloodstain pattern analysis. In S. H. James, P. E. Kish, & T. P. Sutton (Eds.), Principles of bloodstain pattern analysis (pp. 1–10). CRC Press.

    Chapter  Google Scholar 

  2. Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Individual-specific ‘fingerprints’ of human DNA. Nature, 316, 76–79. https://doi.org/10.1038/316076a0

    Article  CAS  PubMed  Google Scholar 

  3. Jeffreys, A. J., Brookfield, J. F., & Semeonoff, R. (1985). Positive identification of an immigration test –case using human DNA fingerprints. Nature, 317, 818–819. https://doi.org/10.1038/317818a0

    Article  CAS  PubMed  Google Scholar 

  4. Peschel, O., Kunz, S. N., Rothschild, M. A., & Mützel, E. (2011). Blood stain pattern analysis. Forensic Science, Medicine, and Pathology, 7, 257–270. https://doi.org/10.1007/s12024-010-9198-1

    Article  CAS  PubMed  Google Scholar 

  5. Schwarzacher, D. (1930). Determination of the age of bloodstains. American Journal of Police Science, 1(4), 374–380.

    Article  Google Scholar 

  6. Tomellini, L. (1907). De l’emplol d’une table chromatiqie pour les taches du sang. Archives d’antropologie criminelle de Criminologie, 14, 2.

    Google Scholar 

  7. Leers, O. (1910). Die Forensische Blutuntersuchung. Springer.

    Google Scholar 

  8. Patterson, D. (1960). Use of reflectance measurements in assessing the colour changes of ageing bloodstains. Nature, 187, 688–689. https://doi.org/10.1038/187688a0

    Article  CAS  PubMed  Google Scholar 

  9. Zadora, G., & Menżyk, A. (2018). In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains. Trends in Analytical Chemistry, 105, 137–165. https://doi.org/10.1016/j.trac.2018.04.009

    Article  CAS  Google Scholar 

  10. Bremmer, R. H., de Bruin, K. G., van Gemert, M. J. C., et al. (2012). Forensic quest for age determination of bloodstains. Forensic Science International, 216, 1–11. https://doi.org/10.1016/j.forsciint.2011.07.027

    Article  CAS  PubMed  Google Scholar 

  11. Sharma, V., & Kumar, R. (2018). Trends of chemometrics in bloodstain investigations. Trends in Analytical Chemistry, 107, 181–195. https://doi.org/10.1016/j.trac.2018.08.006

    Article  CAS  Google Scholar 

  12. Ramsthaler, F., Schmidt, P., Bux, R., et al. (2012). Drying properties of bloodstains on common indoor surfaces. International Journal of Legal Medicine, 126, 739–746. https://doi.org/10.1007/s00414-012-0734-2

    Article  PubMed  Google Scholar 

  13. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Hemoglobin, Portrait of a protein in action. In J. M. Berg, J. L. Tymoczko, & L. Stryer (Eds.), Biochemistry (pp. 191–210). W.H. Freeman.

    Google Scholar 

  14. Stadler, A. M., Digel, I., Artmann, G. M., et al. (2008). Hemoglobin dynamics in red blood cells: Correlation to body temperature. Biophysical Journal, 95, 5449–5461. https://doi.org/10.1529/biophysj.108.138040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Umbreit, J. (2007). Methemoglobin it’s not just blue: A concise review. American Journal of Hematology, 82, 134–144. https://doi.org/10.1002/ajh.20738

    Article  CAS  PubMed  Google Scholar 

  16. Colombo, M. F., & Sanches, R. (1990). Hydration-dependent conformational states of hemoglobin equilibrium and kinetic behavior. Biophysical Chemistry, 36, 33–39. https://doi.org/10.1016/0301-4622(90)85004-p

    Article  CAS  PubMed  Google Scholar 

  17. Meinke, M., Müller, G., Helfmann, J., & Friebel, M. (2007). Optical properties of platelets and blood plasma and their influence on the optical behavior of whole blood in the visible to near infrared wavelength range. Journal of Biomedical Optics. https://doi.org/10.1117/1.2435177

  18. Bosschaart, N., Edelman, G. J., Aalders, M. C. G., et al. (2014). A literature review and novel theoretical approach on the optical properties of whole blood. Lasers in Medical Science, 29, 453–479. https://doi.org/10.1007/s10103-013-1446-7

    Article  PubMed  Google Scholar 

  19. Edelman, G., Manti, V., van Ruth, S. M., et al. (2012). Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Science International, 220, 239–244. https://doi.org/10.1016/j.forsciint.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  20. Hofmann, A., Simon, A., Grkovic, T., & Jones, M. (2014). UV–Vis spectroscopy. In A. Hofmann, A. Simon, T. Grkovic, & M. Jones (Eds.), Methods of molecular analysis in the life sciences (pp. 15–37). Cambridge University Press.

    Chapter  Google Scholar 

  21. Zijlstra, W. G., Buursma, A., & Meeuwsen-Van der Roest, W. P. (1991). Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clinical Chemistry, 37, 1633–1638.

    Article  CAS  Google Scholar 

  22. Asakura, T., Minakata, K., Adachi, K., et al. (1977). Denatured hemoglobin in sickle erythrocytes. The Journal of Clinical Investigation, 59, 633–640. https://doi.org/10.1172/JCI108681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, B., Beveridge, P., O’Hare, W. T., & Islam, M. (2011). The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Science International, 212, 198–204. https://doi.org/10.1016/j.forsciint.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  24. Bremmer, R. H., Nadort, A., van Leeuwen, T. G., et al. (2011). Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Science International, 206, 166–171. https://doi.org/10.1016/j.forsciint.2010.07.034

    Article  CAS  PubMed  Google Scholar 

  25. Bremmer, R. H., de Bruin, D. M., de Joode, M., et al. (2011). Biphasic oxidation of oxy-hemoglobin in bloodstains. PLoS. https://doi.org/10.1371/journal.pone.0021845

  26. Sun, H., Dong, Y., Zhang, P., et al. (2017). Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods. IEEE Photonics Journal. https://doi.org/10.1109/JPHOT.2017.2651580

  27. Edelman, G. J., Gaston, E., van Leeuwen, C. P. J., & Aalders, M. C. (2012). Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Science International, 223, 28–39. https://doi.org/10.1016/j.forsciint.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  28. Li, B., Beveridge, P., O’Hare, W. T., & Islam, M. (2013). The age estimation of blood stains up to 30 days old using visible wavelength hyperspectral image analysis and linear discriminant analysis. Science & Justice, 53, 270–277. https://doi.org/10.1016/j.scijus.2013.04.004

    Article  CAS  Google Scholar 

  29. Edelman, G. J., van Leeuwen, T. G., & Aalders, M. C. G. (2012). Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Science International, 223, 72–77. https://doi.org/10.1016/j.forsciint.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  30. Thanakiatkrai, P., Yaodam, A., & Kitpipit, T. (2013). Age estimation of bloodstains using smartphones and digital image analysis. Forensic Science International, 233, 288–297. https://doi.org/10.1016/j.forsciint.2013.09.027

    Article  PubMed  Google Scholar 

  31. Shin, J., Choi, S., Yang, J.-S., et al. (2017). Smart forensic phone: Colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors and Actuators B: Chemical, 243, 221–225. https://doi.org/10.1016/j.snb.2016.11.142

    Article  CAS  Google Scholar 

  32. Rezazadeh, M., Seidi, S., Lid, M., et al. (2019). The modern role of smartphones in analytical chemistry. Trends in Analytical Chemistry, 118, 548–555. https://doi.org/10.1016/j.trac.2019.06.019

    Article  CAS  Google Scholar 

  33. Jameson, D. M. (2014). Intrinsic protein fluorescence. In D. M. Jameson (Ed.), Introduction to fluorescence (pp. 251–276). CRC Press.

    Chapter  Google Scholar 

  34. Guo, K., Zhegalova, N., Achilefu, S., & Berezin, M. Y. (2013). Bloodstain age analysis: Toward solid state fluorescent lifetime measurements. Proceedings of SPIE. https://doi.org/10.1117/12.2007756

  35. Nagababu, E., & Rifkind, J. M. (1998). Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochemical and Biophysical Research Communications, 247, 592–596. https://doi.org/10.1006/bbrc.1998.8846

    Article  CAS  PubMed  Google Scholar 

  36. Guo, K., Achilefu, S., & Berezin, M. Y. (2012). Dating bloodstains with fluorescence lifetime measurements. Chemistry, 18, 1303–1305. https://doi.org/10.1002/chem.201102935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mc Shine, S., Suhling, K., Beavil, A., et al. (2017). The applicability of fluorescence lifetime to determine the time since the deposition of biological stains. Analytical Methods, 9, 2007–2013. https://doi.org/10.1039/C6AY03099H

    Article  Google Scholar 

  38. Muro, C. K., Doty, K. C., Bueno, J., et al. (2016). Forensic applications of vibrational spectroscopy. In E. Katz & J. Halamek (Eds.), Forensic Science. A multidisciplinary approach (pp. 5–44). Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  39. Botonjic-Sehic, E., Brown, C. W., Lamontagne, M., & Tsaparikos, M. (2009). Forensic application of near-infrared spectroscopy: Aging of bloodstains. Spectroscopy, 24, 1–9. https://doi.org/10.1016/j.forsciint.2012.03.009

    Article  CAS  Google Scholar 

  40. Boyd, S., Bertino, M. F., & Seashols, S. J. (2011). Raman spectroscopy of blood samples for forensic applications. Forensic Science International, 208, 124–128. https://doi.org/10.1016/j.forsciint.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  41. Lemler, P., Premasiri, W. R., DelMonaco, A., & Ziegler, L. D. (2014). NIR Raman spectra of whole human blood: Effects of laser-induced and in vitro hemoglobin denaturation. Analytical and Bioanalytical Chemistry, 406, 193–200. https://doi.org/10.1007/s00216-013-7427-7

    Article  CAS  PubMed  Google Scholar 

  42. Doty, K. C., McLaughlin, G., & Lednev, I. K. (2016). A Raman “spectroscopic clock” for bloodstain age determination: The first week after deposition. Analytical and Bioanalytical Chemistry, 408, 3993–4001. https://doi.org/10.1007/s00216-016-9486-z

    Article  CAS  PubMed  Google Scholar 

  43. Doty, K. C., Muro, C. K., & Lednev, I. K. (2017). Predicting the time of the crime: Bloodstain aging estimation for up to two years. Forensic Chemistry, 5, 1–7. https://doi.org/10.1016/j.forc.2017.05.002

    Article  CAS  Google Scholar 

  44. Strekas, T. C., & Spiro, T. G. (1972). Hemoglobin: Resonance Raman spectra. Biochimica et Biophysica Acta (BBA) – Protein Structure, 263, 830–833. https://doi.org/10.1016/0005-2795(72)90072-4

    Article  CAS  Google Scholar 

  45. Rousseau, D. L., & Ondrias, M. R. (1984). Raman scattering. In D. L. Rousseau (Ed.), Optical techniques in biological research (pp. 100–108). Academic Press.

    Google Scholar 

  46. Sato, H., Chiba, H., Tashiro, H., & Ozaki, Y. J. (2001). Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: Comparison of the spectra with 514.5, 720, and 1064 nm excitation. Journal of Biomedical Optics, 6, 366–370. https://doi.org/10.1117/1.1380668

    Article  CAS  PubMed  Google Scholar 

  47. Hu, S. Z., Smith, K. M., & Spiro, T. G. (1996). Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin. Journal of the American Chemical Society, 118, 12638–12646. https://doi.org/10.1021/ja962239e

    Article  CAS  Google Scholar 

  48. Hanson, E., Albornoz, A., & Ballantyne, J. (2011). Validation of the hemoglobin (Hb) hypsochromic shift assay for determination of the time since deposition (TSD) of dried bloodstains. Forensic Science International: Genetics Supplement Series, 3, e307–e308. https://doi.org/10.1016/j.fsigss.2011.09.016

    Article  Google Scholar 

  49. Agudelo, J., Huynh, C., & Halamek, J. (2015). Forensic determination of blood sample age using a bioaffinity-based assay. Analyst, 140, 1411–1415. https://doi.org/10.1039/C4AN02269F

    Article  CAS  PubMed  Google Scholar 

  50. Tsuruga, M., Matsuoka, A., Hachimori, A., et al. (1998). The molecular mechanism of autoxidation for human oxyhemoglobin. The Journal of Biological Chemistry, 273, 8607–8615. https://doi.org/10.1074/jbc.273.15.8607

    Article  CAS  PubMed  Google Scholar 

  51. Laan, N., Smith, F., Nicloux, C., & Brutin, D. (2016). Morphology of drying blood pools. Forensic Science International, 267, 104–109. https://doi.org/10.1016/j.forsciint.2016.08.005

    Article  PubMed  Google Scholar 

  52. Zadora, G., Martyna, A., Ramos, D., & Aitken, C. (2014). Statistical analysis in forensic science: Evidential value of multivariate physicochemical data. Wiley.

    Google Scholar 

  53. Martyna, A., Zadora, G., Neocleous, T., et al. (2016). Hybrid approach combining chemometrics and likelihood ratio framework for reporting the evidential value of spectra. Analytica Chimica Acta, 931, 34–46. https://doi.org/10.1016/j.aca.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  54. Menżyk, A., Damin, A., Martyna, A., et al. (2020). Toward a novel framework for bloodstains dating by Raman spectroscopy: How to avoid sample photodamage and subsampling errors. Talanta. https://doi.org/10.1016/j.talanta.2019.120565

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Zadora .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Menżyk, A., Zadora, G. (2022). Recent Advances in the Forensic Dating of Blood Traces: A Minireview. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_15

Download citation

Publish with us

Policies and ethics