Skip to main content

Fast Reciprocal Collision Avoidance Under Measurement Uncertainty

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

We present a fully distributed collision avoidance algorithm based on convex optimization for a team of mobile robots. This method addresses the practical case in which agents sense each other via measurements from noisy on-board sensors with no inter-agent communication. Under some mild conditions, we provide guarantees on mutual collision avoidance for a broad class of policies including the one presented. Additionally, we provide numerical examples of computational performance and show that, in both 2D and 3D simulations, all agents avoid each other and reach their desired goals in spite of their uncertainty about the locations of other agents.

This work was supported in part by the Ford-Stanford Alliance program, and by DARPA YFA award D18AP00064. We are grateful for this support.

G. Angeris and K. Shah—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The agent performing the specified computation.

  2. 2.

    More specifically, \(v+M=\{v + w \mid w \in M\}\).

  3. 3.

    More generally, a star-shaped domain around \(0 \in R_j(t)\) would suffice.

  4. 4.

    The appendix can be found at https://arxiv.org/abs/1905.12875.

  5. 5.

    https://youtu.be/oz-bMovG4ow.

References

  1. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)

    Article  MathSciNet  Google Scholar 

  2. Augugliaro, F., Schoellig, A.P., D’Andrea, R.: Generation of collision-free trajectories for a quadrocopter fleet: a sequential convex programming approach. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1917–1922, October 2012

    Google Scholar 

  3. Bandyopadhyay, S., Chung, S., Hadaegh, F.Y.: Probabilistic swarm guidance using optimal transport. In: 2014 IEEE Conference on Control Applications (CCA), pp. 498–505, October 2014

    Google Scholar 

  4. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-Body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19457-3_1

  5. van den Berg, J., Guy, S., Snape, J., Lin, M., Manocha, D.: Rvo2 library: reciprocal collision avoidance for real-time multi-agent simulation (2016)

    Google Scholar 

  6. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  7. Bertsekas, D., Rhodes, I.: Recursive state estimation for a set-membership description of uncertainty. IEEE Trans. Autom. Control 16(2), 117–128 (1971)

    Article  MathSciNet  Google Scholar 

  8. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  Google Scholar 

  9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  10. Chen, J., Revels, J.: Robust benchmarking in noisy environments. arXiv preprint arXiv:1608.04295 (2016)

  11. Chen, Y., Cutler, M., How, J.P.: Decoupled multiagent path planning via incremental sequential convex programming. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5954–5961 (2015)

    Google Scholar 

  12. Claes, D., Hennes, D., Tuyls, K., Meeussen, W.: Collision avoidance under bounded localization uncertainty. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1192–1198 (Oct 2012)

    Google Scholar 

  13. Domahidi, A., Chu, E., Boyd, S.: ECOS: An SOCP solver for embedded systems. In: 2013 European Control Conference (ECC), pp. 3071–3076. IEEE (2013)

    Google Scholar 

  14. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gopalakrishnan, B., Singh, A.K., Kaushik, M., Krishna, K.M., Manocha, D.: PRVO: probabilistic reciprocal velocity obstacle for multi robot navigation under uncertainty. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1089–1096, September 2017

    Google Scholar 

  16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  17. Huang, H., Zhou, Z., Zhang, W., Ding, J., Stipanovic, D.M., Tomlin, C.J.: Safe-reachable area cooperative pursuit. IEEE Trans. Robot. 10(5) (2012)

    Google Scholar 

  18. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. Int. J. Robot. Res. 34(7), 883–921 (2015)

    Article  Google Scholar 

  19. LaValle, S.M., Kuffner, J.J., Jr.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  20. Liu, Y., Zhao, Y., Wu, F.: Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances. IET Control Theor. Appl. 10(4), 431–442 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ma, X., Jiao, Z., Wang, Z., Panagou, D.: Decentralized prioritized motion planning for multiple autonomous UAVs in 3D polygonal obstacle environments. In: International Conference on Unmanned Aircraft Systems (ICUAS), pp. 292–300 (2016)

    Google Scholar 

  22. Morgan, D., Chung, S.J., Hadaegh, F.Y.: Model predictive control of swarms of spacecraft using sequential convex programming. J. Guidance Control Dyn. 37(6), 1725–1740 (2014)

    Article  Google Scholar 

  23. Preiss, J.A., Hönig, W., Ayanian, N., Sukhatme, G.S.: Downwash-aware trajectory planning for large quadrotor teams. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 250–257, September 2017

    Google Scholar 

  24. Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: Science and Systems, vol. 9, pp. 1–10. Citeseer (2013)

    Google Scholar 

  25. Şenbaşlar, B., Hönig, W., Ayanian, N.: Robust trajectory execution for multi-robot teams using distributed real-time replanning. In: Correll, N., Schwager, M., Otte, M. (eds.) Distributed Autonomous Robotic Systems. SPAR, vol. 9, pp. 167–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05816-6_12

    Chapter  Google Scholar 

  26. Shah, K., Schwager, M.: Multi-agent cooperative pursuit-evasion strategies under uncertainty. In: Correll, N., Schwager, M., Otte, M. (eds.) Distributed Autonomous Robotic Systems. SPAR, vol. 9, pp. 451–468. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05816-6_32

    Chapter  Google Scholar 

  27. Uteshev, A.Y., Goncharova, M.V.: Point-to-ellipse and point-to-ellipsoid distance equation analysis. J. Comput. Appl. Math. 328, 232–251 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3260–3267, September 2011

    Google Scholar 

  29. Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

  30. Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast, on-line collision avoidance for dynamic vehicles using buffered Voronoi cells. IEEE Robot. Autom. Lett. 2(2), 1047–1054 (2017)

    Article  Google Scholar 

  31. Zhu, H., Alonso-Mora, J.: Chance-constrained collision avoidance for MAVs in dynamic environments. IEEE Robot. Autom. Lett. 4(2), 776–783 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Shah .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 4871 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angeris, G., Shah, K., Schwager, M. (2022). Fast Reciprocal Collision Avoidance Under Measurement Uncertainty. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_12

Download citation

Publish with us

Policies and ethics