Skip to main content

Fractal Analysis and Its Applications in Urban Environment

  • Chapter
  • First Online:
System Analysis & Intelligent Computing (SAIC 2020)

Abstract

Fractal sets have been known for more than a century. However, only in 1975, Mandelbrot gave them the name “fractal” and mathematically defined them as sets whose Hausdorff dimension exceeds the topological dimension. While initially fractals were a pure mathematical phenomenon, afterwards fractal-like properties have been discovered in many natural and artificial objects and processes. The recently developed fractal analysis and theory of fractals have been applied in many different areas, including biology, health care, urban planning, environmental studies, geology, geography, chemistry, ecology, astronomy, computer science, social science, music, literature, art to name a few. This chapter gives a literature survey of the fractal theory and analysis applications to solve different problems in various areas. We describe main concepts and frequently used methods to compute a fractal dimension. Finally, we apply the fractal analysis to study the geography and infrastructure of Kyiv and facilitate decision making in urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, San Francisco, CA (1982)

    MATH  Google Scholar 

  2. Sponge, M.: https://upload.wikimedia.org/wikipedia/commons/5/52/Menger-Schwamm-farbig.png. Last accessed 01 June 2021

  3. Barbara, D.: Chaotic mining: knowledge discovery using the fractal dimension. In: 1999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Philadelphia, USA (1999)

    Google Scholar 

  4. Barbará, D., Chen, P.: Using the fractal dimension to cluster datasets. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 260–264. Association for Computing Machinery, Boston, Massachusetts, USA (2000). https://doi.org/10.1145/347090.347145

  5. Harte, D.: Multifractals: Theory and Applications, 1st edn. Chapman & Hall/CRC (2001)

    Google Scholar 

  6. Suki, B., Barabasi, A.-L., Hantos, Z., Petak, F., Stanley, H.: Avalanches and power-law behaviour in lung inflation. Nature 368(6472), 615–618 (1994). https://doi.org/10.1038/368615a0

    Article  Google Scholar 

  7. Warsi, M.A.: The fractal nature and functional connectivity of brain function as measured by BOLD MRI in Alzheimer’s disease. Dissertation, McMaster University (2012)

    Google Scholar 

  8. Stanley, H.E., Amaral, L.A., Goldberger, A.L., Havlin, S., Ivanov, P. Ch., Peng, C.K.: Statistical physics and physiology: monofractal and multifractal approaches. Physica A 270(1–2), 309–324 (1999)

    Google Scholar 

  9. Captur, G., Karperien, A.L., Hughes, A.D., Francis, D.P., Moon, J.C.: The fractal heart—Embracing mathematics in the cardiology clinic. Nat. Rev. Cardiol. 14(1), 56–64 (2017). https://doi.org/10.1038/nrcardio.2016.161

    Article  Google Scholar 

  10. Uahabi, K.L., Atounti, M.: Applications of fractals in medicine. Ann. Univ. Craiova Math. Comput. Sci. Ser. 42(1), 167–174 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Sugihara, G., May, R.M.: Applications of fractals in ecology. Trends Ecol. Evol. 5(3), 79–86 (1990)

    Article  Google Scholar 

  12. Lovejoy, S., Schertzer, D., Ladoy, P.: Fractal characterization of inhomogeneous geophysical measuring networks. Nature 319(6048), 43–44 (1986)

    Article  Google Scholar 

  13. Ribeiro, M.B., Miguelote, A.Y.: Fractals and the Distribution of galaxies. Braz. J. Phys. 28(2), 132–160 (1998). https://doi.org/10.1590/S0103-97331998000200007

    Article  Google Scholar 

  14. Shen, G.: Fractal dimension and fractal growth of urbanized areas. Int. J. Geogr. Inf. Sci. 16(5), 419–437 (2002)

    Article  Google Scholar 

  15. Giovanni, R., Caglioni, M.: Contribution to fractal analysis of cities: A study of metropolitan area of Milan. Cybergeo: European Journal of Geography (2004).

    Google Scholar 

  16. Chen, Y., Wang, J., Feng, J.: Understanding the fractal dimensions of urban forms through spatial entropy. Entropy 19(11), 600 (2017). https://doi.org/10.3390/e19110600

    Article  Google Scholar 

  17. Bao, L., Ma, J., Long, W., He, P., Zhang, T., Nguyen, A.V.: Fractal analysis in particle dissolution: a review. Rev. Chem. Eng. 30(3), 261–287 (2014)

    Article  Google Scholar 

  18. Kaneko, K., Sato, M., Suzuki, T., Fujiwara, Y., Nishikawa, K., Jaroniec, M.: Surface fractal dimension of microporous carbon fibres by nitrogen adsorption. J. Chem. Soc., Faraday Trans. 87(1), 179–184 (1991). https://doi.org/10.1039/FT9918700179

    Article  Google Scholar 

  19. Sajjipanon, P., Ratanamahatana, C.A.: Efficient time series mining using fractal representation. In: Third International Conference on Convergence and Hybrid Information Technology, pp. 704–709. IEEE, Busan, the Republic of Korea (2008). https://doi.org/10.1109/ICCIT.2008.311

  20. Traina, C., Jr., Traina, A., Wu, L., Faloutsos, C.: Fast feature selection using fractal dimension. J. Inf. Data Manage. 1(1), 3–16 (2010)

    Google Scholar 

  21. Tasoulis, D.K., Vrahatis, M.: Unsupervised clustering using fractal dimension. Int. J. Bifurcation Chaos 16(07), 2073–2079 (2006). https://doi.org/10.1142/S021812740601591X

    Article  MATH  Google Scholar 

  22. Wilson, T., Dominic, J., Halverson, J.: Fractal interrelationships in field and seismic data. Technical Report 32158-5437, Department of Geology and Geography, West Virginia University, Morgantown, WV, United States (1997)

    Google Scholar 

  23. Aviles, C.A., Scholz, C.H., Boatwright, J.: Fractal analysis applied to characteristic segments of the San Andreas Fault. J. Geophys. Res. 92(B1), 331–344 (1987). https://doi.org/10.1029/JB092iB01p00331

    Article  Google Scholar 

  24. Chang, Y.-F., Chen, C.-C., Liang, C.-Y.: The fractal geometry of the surface ruptures of the 1999 Chi-Chi earthquake, Taiwan. Geophys. J. Int. 170(1), 170–174 (2007). https://doi.org/10.1111/j.1365-246X.2007.03420.x

    Article  Google Scholar 

  25. Vislenko, A.: Possibilities of fractal analysis application to cultural objects. Observatory Culture 2, 13–19 (2015)

    Article  Google Scholar 

  26. Song, C., Havlin, S., Makse, H.A.: Origins of fractality in the growth of complex networks. Nat. Phys. 2(4), 275–281 (2006). https://doi.org/10.1038/nphys266

    Article  Google Scholar 

  27. Das, A., Das, P.: Classification of different Indian songs based on fractal analysis. Complex Syst. 15(3), 253–259 (2005)

    MATH  Google Scholar 

  28. Reljin, N., Pokrajac, D.: Music performers classification by using multifractal features: A case study. Archiv. Acoust. 42(2), 223–233 (2017). https://doi.org/10.1515/aoa-2017-0025

    Article  Google Scholar 

  29. Boon, J.-P., Decroly, O.: Dynamical systems theory for music dynamics. Chaos 5(3), 501–508 (1995)

    Article  Google Scholar 

  30. Gonzato, G., Mulargia, F., Marzocchi, W.: Practical application of fractal analysis: Problems and solutions. Geophys. J. Int. 132(2), 275–282 (1998)

    Article  Google Scholar 

  31. Richardson, L.F.: The problem of contiguity: an appendix of statistics of deadly quarrels. Gen. Syst. Yearbook 6, 139–187 (1961)

    Google Scholar 

  32. Mandelbrot, B.B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

The presented results were obtained in the National Research Fund of Ukraine project 2020.01/0247 «System methodology-based tool set for planning underground infrastructure of large cities providing minimization of ecological and technogenic risks of urban space».

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malishevsky, A. (2022). Fractal Analysis and Its Applications in Urban Environment. In: Zgurovsky, M., Pankratova, N. (eds) System Analysis & Intelligent Computing. SAIC 2020. Studies in Computational Intelligence, vol 1022. Springer, Cham. https://doi.org/10.1007/978-3-030-94910-5_18

Download citation

Publish with us

Policies and ethics