Skip to main content

Convolutional Neural Networks Analysis Using Concentric-Rings Interactive Visualization

  • Chapter
  • First Online:
Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1014))

  • 626 Accesses

Abstract

The goal of this paper is to present the interactive web visualization technique DeepRings. The technique has a radial design, using concentric rings to represent the layers of a deep learning model, where each circular ring encodes the feature maps of that layer. The proposed technique allows to perform analysis of tasks over time regarding a single model or a comparison between two distinct models, thus contributing to a better understanding of the behavior of such models. The design supports several training methods designed to solve Computer Vision tasks, like supervised learning and self-supervised learning, as well as reinforcement learning. Additional charts highlight similarity metrics, and interaction techniques such as filtering help reduce the analysis data. Finally, preliminary evaluations were conducted with domain experts highlighting positive points and aspects that can be improved, suggesting avenues for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    GDPR Legal Text—https://eur-lex.europa.eu/eli/reg/2016/679/oj.

  2. 2.

    D3 Website—https://d3js.org/ (Accessed: 28 December 2021).

  3. 3.

    TensorFlow Website—https://www.tensorflow.org/ (Accessed: 28 December 2021).

  4. 4.

    Flask Website—https://flask.palletsprojects.com (Accessed: 28 December 2021).

  5. 5.

    Unity Website—https://unity.com/.

References

  1. Samek, W., Müller, K.-R.: Towards Explainable Artificial Intelligence, pp. 5–22. Springer International Publishing, Cham (2019)

    Google Scholar 

  2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, .: Concrete problems in AI safety. CoRR. arXiv:abs/1606.06565 (2016)

  3. Lapuschkin, Sebastian, Wäldchen, Stephan, Binder, Alexander, Montavon, Grégoire., Samek, Wojciech, Müller, Klaus-Robert.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10(1), 1096 (2019)

    Article  Google Scholar 

  4. Bach, Sebastian, Binder, Alexander, Montavon, Grégoire., Klauschen, Frederick, Müller, Klaus-Robert., Samek, Wojciech: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One 10(7), 1–46 (2015)

    Google Scholar 

  5. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: 2017 IEEE International Conference on Computer Vision (ICCV), (2017)

    Google Scholar 

  6. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision—ECCV 2014, pp. 818–833. Springer International Publishing, Cham (2014)

    Google Scholar 

  7. Hehn, T.M., Kooij, J.F.P., Hamprecht, F.A.: End-to-end learning of decision trees and forests. Int. J. Comput. Vis. 128(4), 997–1011 (2020)

    Google Scholar 

  8. Hohman, F., Park, H., Robinson, H., Chau, D.H.P.: Summit: scaling deep learning interpretability by visualizing activation and attribution summarizations. IEEE Trans. Vis. Comput. Graph. 26(1), 1096–1106 (2020)

    Google Scholar 

  9. Mortier, R., Haddadi, H., Henderson, T., McAuley, D., Crowcroft, J.: Human-data interaction: the human face of the data-driven society. SSRN Electron. J. (2014)

    Google Scholar 

  10. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018)

    Google Scholar 

  11. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8 (2017)

    Google Scholar 

  12. Montavon, Grégoire., Samek, Wojciech, Müller, Klaus-Robert.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144. Association for Computing Machinery, New York, USA (2016)

    Google Scholar 

  14. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2020)

    Google Scholar 

  15. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. In: 5th International Conference on Learning Representations 2017, (2017)

    Google Scholar 

  16. Yann, L., Yoshua, B., Geoffrey, H.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  17. Alves, J., Araújo, T., Marques, B., Dias, P., Santos, B.S.: Deeprings: a concentric-ring based visualization to understand deep learning models. In: 2020 24th International Conference Information Visualisation (IV), pp. 292–295 (2020)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  19. Card, S., Mackinlay, J.D., Shneiderman, B.: Information visualization. Hum.-Comput. Interact. Des. Issues, Solut. Appl. 181, (2009)

    Google Scholar 

  20. Munzner, T.: Visualization Analysis and Design. CRC Press (2014)

    Google Scholar 

  21. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning: an interrogative survey for the next frontiers. IEEE Trans. Vis. Comput. Graph. 25(8), 2674–2693 (2019)

    Google Scholar 

  22. Komarek, A., Pavlik, J., Sobeslav, V.: Network visualization survey. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) Computational Collective Intelligence, pp. 275–284. Springer International Publishing, Cham (2015)

    Google Scholar 

  23. Shaobo, Y., Lingda, W.: A key technology survey and summary of dynamic network visualization. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 474–478. IEEE (2017)

    Google Scholar 

  24. McGee, F., Ghoniem, M., Melançon, G., Otjacques, B., Pinaud, B.: The state of the art in multilayer network visualization. Comput. Graph. Forum 38(6), 125–149 (2019)

    Article  Google Scholar 

  25. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. In: Deep Learning Workshop, International Conference on Machine Learning (ICML), (2015)

    Google Scholar 

  26. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill, (2017)

    Google Scholar 

  27. Wang, J., Gou, L., Shen, H.W., Yang, H.: DQNViz: a visual analytics approach to understand deep Q-networks. IEEE Trans. Vis. Comput. Graph. 25(1), 288–298 (2019)

    Google Scholar 

  28. Hilton, J., Cammarata, N., Carter, S., Goh, G., Olah, C.: Understanding RL vision. Distill, (2020). https://distill.pub/2020/understanding-rl-vision

  29. Such, F.P., Madhavan, V., Liu, R., Wang, R., Castro, P.S., Li, Y., Zhi, J., Schubert, L., Bellemare, M.G., Clune, J., et al.: An atari model zoo for analyzing, visualizing, and comparing deep reinforcement learning agents. In: Proceedings of IJCAI 2019, (2019)

    Google Scholar 

  30. Rupprecht, C., Ibrahim, C., Pal, C.J.: Finding and visualizing weaknesses of deep reinforcement learning agents. In: International Conference on Learning Representations (ICLR), (2020)

    Google Scholar 

  31. Gupta, P., Puri, N., Verma, S., Kayastha, D., Deshmukh, S., Krishnamurthy, B., Singh, S.: Explain your move: understanding agent actions using specific and relevant feature attribution. In: International Conference on Learning Representations (ICLR), (2020)

    Google Scholar 

  32. Liu, W., Li, R., Zheng, M., Karanam, S., Wu, Z., Bhanu, B., Radke, R.J., Camps, O.: Towards visually explaining variational autoencoders. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020)

    Google Scholar 

  33. Wang, Z.J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., Kahng, M., Chau, D.H.P.: CNN explainer: learning convolutional neural networks with interactive visualization. IEEE Trans. Vis. Comput. Graph. 27(2), 1396–1406 (2021)

    Google Scholar 

  34. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  35. Pezzotti, N., Höllt, T., Van Gemert, J., Lelieveldt, B.P.F., Eisemann, E., Vilanova, A.: Deepeyes: progressive visual analytics for designing deep neural networks. IEEE Trans. Vis. Comput. Graph. 24(1), 98–108 (2017)

    Google Scholar 

  36. Chae, J., Gao, S., Ramanathan, A., Steed, C.A., Tourassi, G.: Visualization for classification in deep neural networks. Technical Report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), (2017)

    Google Scholar 

  37. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp. 618–626. IEEE (2017)

    Google Scholar 

  38. Zurowietz, M., Nattkemper, T.W.: An interactive visualization for feature localization in deep neural networks. Front. Artif. Intell. 3(49), (2020)

    Google Scholar 

  39. Liu, Mengchen, Shi, Jiaxin, Li, Zhen, Li, Chongxuan, Zhu, Jun, Liu, Shixia: Towards better analysis of deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 23(1), 91–100 (2016)

    Article  Google Scholar 

  40. Kahng, M., Andrews, P.Y., Kalro, A., Chau, D.H.: Activis: visual exploration of industry-scale deep neural network models. IEEE Trans. Vis. Comput. Graph. 24(1), 88–97 (2017)

    Google Scholar 

  41. Zhang, X., Yin, Z., Feng, Y., Shi, Q., Liu, J., Chen, Z.: Neuralvis: visualizing and interpreting deep learning models. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1106–1109. IEEE (2019)

    Google Scholar 

  42. Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mane, D., Fritz, D., Krishnan, D., Viégas, F.B., Wattenberg, M.: Visualizing dataflow graphs of deep learning models in tensorflow. IEEE Trans. Vis. Comput. Graph. 24(1), 1–12 (2017)

    Google Scholar 

  43. Woodburn, L., Yang, Y., Marriott, K.: Interactive visualisation of hierarchical quantitative data: an evaluation. In: 2019 IEEE Visualization Conference (VIS), pp. 96–100. IEEE (2019)

    Google Scholar 

  44. Schulz, Hans-Jorg., Hadlak, Steffen, Schumann, Heidrun: The design space of implicit hierarchy visualization: a survey. IEEE Trans. Vis. Comput. Graph. 17(4), 393–411 (2010)

    Article  Google Scholar 

  45. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR’09, (2009)

    Google Scholar 

  46. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: Supervised contrastive learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020)

    Google Scholar 

  47. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 1861–1870. PMLR (2018)

    Google Scholar 

  48. Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M., et al.: Unity: a general platform for intelligent agents. arXiv:1809.02627 (2018)

  49. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision—ECCV 2016, pp. 630–645. Springer International Publishing, Cham (2016)

    Google Scholar 

  50. Riitta, J.: Think-aloud protocol. Handb. Transl. Stud. 1, 371–374 (2010)

    Google Scholar 

  51. Li, Y., Yosinski, J., Clune, J., Lipson, H., Hopcroft, J.E.: Convergent learning: do different neural networks learn the same representations? In: FE@NIPS, pp. 196–212, (2015)

    Google Scholar 

Download references

Acknowledgements

We thank everyone involved in discussion groups and case studies for their time and expertise. This research was developed in the scope of the Ph.D. grant [2020.05789.BD], funded by FCT—Foundation for Science and Technology. It was also supported by IEETA—Institute of Electronics and Informatics Engineering of Aveiro, funded by National Funds through FCT, in the context of the project [UID/CEC/00127/2019]. This study was also supported by PPGCC—UFPA—Computer Science Graduate Program of Federal University of Para, funded by National Funds through the CAPES Edital no 47/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, J., Araújo, T., Meiguins, B.S., Santos, B.S. (2022). Convolutional Neural Networks Analysis Using Concentric-Rings Interactive Visualization. In: Kovalerchuk, B., Nazemi, K., Andonie, R., Datia, N., Banissi, E. (eds) Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery. Studies in Computational Intelligence, vol 1014. Springer, Cham. https://doi.org/10.1007/978-3-030-93119-3_6

Download citation

Publish with us

Policies and ethics