Skip to main content

Training Support Vector Machines for Dealing with the ImageNet Challenging Problem

  • Conference paper
  • First Online:
Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2021)

Abstract

We propose the parallel multi-class support vector machines (Para-SVM) algorithm to efficiently perform the classification task of the ImageNet challenging problem with very large number of images and a thousand classes. Our Para-SVM learns in the parallel way to create ensemble binary SVM classifiers used in the One-Versus-All multi-class strategy. The stochastic gradient descent (SGD) algorithm rapidly trains the binary SVM classifier from mini-batches being created by under-sampling training dataset. The numerical test results on ImageNet challenging dataset show that the Para-SVM algorithm is faster and more accurate than the state-of-the-art SVM algorithms. Our Para-SVM achieves an accuracy of 74.89% obtained in the classification of ImageNet-1000 dataset having 1,261,405 images in 2048 deep features into 1,000 classes in 53.29 min using a PC Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use subscript t to refer to the epoch t.

References

  1. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification Via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_40

    Chapter  Google Scholar 

  2. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. NIPS Foundation (2008). http://books.nips.cc

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

    Article  Google Scholar 

  5. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_12

    Chapter  Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016)

    Google Scholar 

  7. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6

    Chapter  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  9. Do, T.-N.: Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes. Vietnam J. Comput. Sci. 1(2), 107–115 (2014). https://doi.org/10.1007/s40595-013-0013-2

    Article  Google Scholar 

  10. Do, T.-N., Poulet, F.: Parallel multiclass logistic regression for classifying large scale image datasets. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 255–266. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17996-4_23

    Chapter  Google Scholar 

  11. Do, T., Poulet, F.: Parallel learning of local SVM algorithms for classifying large datasets. Trans. Large Scale Data Knowl. Centered Syst. 31, 67–93 (2017)

    Google Scholar 

  12. Do, T.-N., Tran-Nguyen, M.-T.: Incremental parallel support vector machines for classifying large-scale multi-class image datasets. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 20–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48057-2_2

    Chapter  Google Scholar 

  13. Doan, T.-N., Do, T.-N., Poulet, F.: Large scale classifiers for visual classification tasks. Multimed. Tools Appl. 74(4), 1199–1224 (2014). https://doi.org/10.1007/s11042-014-2049-4

    Article  Google Scholar 

  14. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(4), 1871–1874 (2008)

    MATH  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  16. Japkowicz, N. (ed.): AAAI Workshop on Learning from Imbalanced Data Sets. No. WS-00-05 in AAAI Tech report (2000)

    Google Scholar 

  17. Kreßel, U.H.G.: Pairwise classification and support vector machines. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 255–268. MIT Press, Cambridge (1999)

    Google Scholar 

  18. Li, F., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA, pp. 524–531 (2005)

    Google Scholar 

  19. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39(2), 539–550 (2009)

    Article  Google Scholar 

  20. Lowe, D.: Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  21. Lowe, D.: Distinctive image features from scale invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  22. OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (2008). http://www.openmp.org/mp-documents/spec30.pdf

  23. Perronnin, F., Sánchez, J., Liu, Y.: Large-scale image categorization with explicit data embedding. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2297–2304 (2010)

    Google Scholar 

  24. Ricamato, M.T., Marrocco, C., Tortorella, F.: MCS-based balancing techniques for skewed classes: an empirical comparison. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  25. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-gradient solver for SVM. In: Proceedings of the Twenty-Fourth International Conference Machine Learning, pp. 807–814. ACM (2007)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  27. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: 9th IEEE International Conference on Computer Vision (ICCV 2003), 14–17 October 2003, Nice, France, pp. 1470–1477 (2003)

    Google Scholar 

  28. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR abs/1512.00567 (2015)

    Google Scholar 

  29. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4757-3264-1

  30. Vapnik, V., Bottou, L.: Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 5(6), 893–909 (1993)

    Article  Google Scholar 

  31. Visa, S., Ralescu, A.: Issues in mining imbalanced data sets - a review paper. In: Midwest Artificial Intelligence and Cognitive Science Conference, Dayton, USA, pp. 67–73 (2005)

    Google Scholar 

  32. Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)

    Article  Google Scholar 

  33. Wu, J.: Power mean SVM for large scale visual classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2344–2351 (2012)

    Google Scholar 

Download references

Acknowledgments

This work has received support from the College of Information Technology, Can Tho University. The authors would like to thank very much the Big Data and Mobile Computing Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Do, TN., Le Thi, H.A. (2022). Training Support Vector Machines for Dealing with the ImageNet Challenging Problem. In: Le Thi, H.A., Pham Dinh, T., Le, H.M. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO 2021. Lecture Notes in Networks and Systems, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-92666-3_20

Download citation

Publish with us

Policies and ethics