Skip to main content

Smoking and Genetics

  • Reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions
  • 109 Accesses

Abstract

Tobacco smoking is a complex phenotype that is directly associated with early death and morbidity. The genetic and environmental factors affecting several smoking-related phenotypes have been studied in many different designs including family, twin, and genome-wide association studies. In this regard it may be the best studied substance use disorder; however, while overall heritability for several smoking phenotypes seem to be moderately high, the function of discovered genetic variants remains largely unexplored. Several studies indicate that genetic variation in and around nicotinic acetylcholine receptor subunits and CYP2A6, involved in nicotine catabolism, are strongly associated with several smoking phenotypes, while other discovered variants implicate dopamine, glycogenesis, and epigenetic gene regulation. This chapter explores current knowledge of genetics of smoking behavior phenotypes and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CO:

Carbon monoxide

CPD:

Cigarettes per day

GWAS:

Genome-wide association studies

nAChR(s):

Nicotinic acetylcholine receptor(s)

References

  • Agrawal A, Lynskey MT (2008) Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103:1069–1081

    Article  PubMed  Google Scholar 

  • Albuquerque EX, Pereira EF, Alkondon M et al (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  CAS  PubMed  Google Scholar 

  • Baurley JW, Edlund CK, Pardamean CI et al (2016) Genome-wide association of the laboratory-based nicotine metabolite ratio in three ancestries. Nicotine Tob Res 18:1837–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benowitz NL, Jacob P, Ahijevych K, Jarvis MJ, Hall S, Lehouezec J, Hansson A, Lichtenstein E, Henningfield J, Tsoh J, Hurt RD, Velicer W (2002) Biochemical verification of tobacco use and cessation. Nicotine Tob Res 4:149–159

    Article  Google Scholar 

  • Berrettini W, Yuan X, Tozzi F et al (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MS, Apana SM, Nagano KK et al (2010) Smoking produces rapid rise of [11C]nicotine in human brain. Psychopharmacology 209:383–394

    Article  CAS  PubMed  Google Scholar 

  • Bierut LJ, Stitzel JA, Wang JC et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilano V, Gilmour S, Moffiet T et al (2015) Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet 385:966–976

    Article  PubMed  Google Scholar 

  • Bloom AJ, Hartz SM, Baker TB et al (2014) Beyond cigarettes per day. A genome-wide association study of the biomarker carbon monoxide. Ann Am Thorac Soc 11:1003–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Brazel DM, Jiang Y, Hughey JM et al (2019) Exome chip meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use. Biol Psychiatry 85:946–955

    Article  CAS  PubMed  Google Scholar 

  • Buchwald J, Chenoweth MJ, Palviainen T et al (2020) Genome-wide association meta-analysis of nicotine metabolism and cigarette consumption measures in smokers of European descent. Mol Psychiatry 26:2212–2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke PBS (2010) Nicotine. In: Stolerman IP, Price LH (eds) Encyclopedia of psychopharmacology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Connor Gorber S, Schofield-Hurwitz S, Hardt J et al (2009) The accuracy of self-reported smoking: a systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob Res 11:12–24

    Article  PubMed  Google Scholar 

  • Dick DM, Prescott C, Mcgue M (2009) The genetics of substance use and substance use disorders. In: Kim Y-K (ed) Handbook of behavior genetics. Springer, New York

    Google Scholar 

  • Do EK, Prom-Wormley EC, Eaves LJ et al (2015) Genetic and environmental influences on smoking behavior across adolescence and young adulthood in the Virginia twin study of adolescent behavioral development and the transitions to substance abuse follow-up. Twin Res Hum Genet 18:43–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Erzurumluoglu AM, Liu M, Jackson VE et al (2020) Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Mol Psychiatry 25:2392–2409

    Article  CAS  PubMed  Google Scholar 

  • Fragou D, Pakkidi E, Aschner M et al (2019) Smoking and DNA methylation: correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food Chem Toxicol 129:312–327

    Article  CAS  PubMed  Google Scholar 

  • Furberg H, Kim Y, Dackor J et al (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447

    Article  CAS  Google Scholar 

  • Hancock DB, Guo Y, Reginsson GW et al (2018) Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Mol Psychiatry 23:1911–1919

    Article  CAS  PubMed  Google Scholar 

  • Hatsukami D, Zeller M, Gupta P et al (2014) National Cancer Institute and Centers for Disease Control and Prevention. Smokeless Tobacco and Public Health: A Global Perspective. Bethesda, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute. NIH Publication No. 14-7983

    Google Scholar 

  • Ho MK, Tyndale RF (2007) Overview of the pharmacogenomics of cigarette smoking. Pharmacogenomics J 7:81–98

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen J, Jacob P III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

    Article  CAS  PubMed  Google Scholar 

  • Hurst R, Rollema H, Bertrand D (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther 137:22–54

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MJ, Tunstall-Pedoe H, Feyerabend C et al (1987) Comparison of tests used to distinguish smokers from nonsmokers. Am J Public Health 77:1435–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha P (2020) The hazards of smoking and the benefits of cessation: a critical summation of the epidemiological evidence in high-income countries. elife 9:e49979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha P, Peto R (2014) Global effects of smoking, of quitting, and of taxing tobacco. N Engl J Med 370:60–68

    Article  CAS  PubMed  Google Scholar 

  • Keskitalo K, Broms U, Heliovaara M et al (2009) Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet 18:4007–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessov-Schlaggar CN, Pang Z, Swan GE et al (2006) Heritability of cigarette smoking and alcohol use in Chinese male twins: the Qingdao twin registry. Int J Epidemiol 35:1278–1285

    Article  PubMed  Google Scholar 

  • Li MD (2006) The genetics of nicotine dependence. Curr Psychiatry Rep 8:158–164

    Article  CAS  PubMed  Google Scholar 

  • Li MD, Cheng R, Ma JZ et al (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31

    Article  PubMed  Google Scholar 

  • Liu JZ, Tozzi F, Waterworth DM et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Jiang Y, Wedow R et al (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 51:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loukola A, Buchwald J, Gupta R et al (2015) A genome-wide association study of a biomarker of nicotine metabolism. PLoS Genet 11:e1005498

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcginnis KA, Justice AC, Tate JP et al (2019) Using DNA methylation to validate an electronic medical record phenotype for smoking. Addict Biol 24:1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Munafo MR, Timofeeva MN, Morris RW et al (2012) Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. J Natl Cancer Inst 104:740–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeidat M, Zhou G, Li X et al (2018) The genetics of smoking in individuals with chronic obstructive pulmonary disease. Respir Res 19:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick DL, Cheadle A, Thompson DC et al (1994) The validity of self-reported smoking: a review and meta-analysis. Am J Public Health 84:1086–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quach BC, Bray MJ, Gaddis NC et al (2020) Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat Commun 11:5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie H, Roser M (2019) Smoking [online]. Available: https://ourworldindata.org/smoking. Accessed 16 July 2021

  • Rose RJ, Broms U, Korhonen T et al (2009) Genetics of smoking behavior. In: Kim Y-K (ed) Handbook of behavior genetics. Springer, New York

    Google Scholar 

  • Rostron BL, Chang JT, Anic GM et al (2018) Smokeless tobacco use and circulatory disease risk: a systematic review and meta-analysis. Open Heart 5:e000846

    Article  PubMed  PubMed Central  Google Scholar 

  • Saccone NL, Culverhouse RC, Schwantes-An TH et al (2010) Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6:e1001053

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafey O, Eriksen M, Ross H et al (2009) Types of tobacco use. In: The tobacco atlas, 3rd edn. American Cancer Society, Atlanta

    Google Scholar 

  • Sullivan PF, Kendler KS (1999) The genetic epidemiology of smoking. Nicotine Tob Res 1(Suppl 2):S51–S57. Discussion S69–S70

    Article  PubMed  Google Scholar 

  • Thorgeirsson TE, Geller F, Sulem P et al (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452:638–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorgeirsson TE, Gudbjartsson DF, Surakka I et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thun MJ, Henley SJ, Calle EE (2002) Tobacco use and cancer: an epidemiologic perspective for geneticists. Oncogene 21:7307–7325

    Article  CAS  PubMed  Google Scholar 

  • Wain LV, Shrine N, Miller S et al (2015) Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med 3:769–781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JC, Cruchaga C, Saccone NL et al (2009) Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Hum Mol Genet 18:3125–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ware JJ, Chen X, Vink J et al (2016) Genome-wide meta-analysis of cotinine levels in cigarette smokers identifies locus at 4q13.2. Sci Rep 6:20092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2019) WHO global report on trends in prevalence of tobacco use 2000–2025. World Health Organization, Geneva

    Google Scholar 

  • Xu K, Li B, Mcginnis KA et al (2020) Genome-wide association study of smoking trajectory and meta-analysis of smoking status in 842,000 individuals. Nat Commun 11:5302

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoaib Afzal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Afzal, S. (2022). Smoking and Genetics. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-92392-1_34

Download citation

Publish with us

Policies and ethics