Skip to main content

The Hippocampus and Addiction: Focus on Plasticity and Circuitry in the Hippocampus

  • Reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions
  • 124 Accesses

Abstract

Hippocampal plasticity assists with consolidation and storage of long-lasting memories, and this plasticity is mostly driven by the glutamatergic system. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This chapter discusses evidence that drugs of abuse alter hippocampal plasticity, and that glutamatergic plasticity in the hippocampus contributes to the process of addiction and relapse. Taken together, development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130

    Article  CAS  PubMed  Google Scholar 

  • Adlaf EW, Vaden RJ et al (2017) Adult-born neurons modify excitatory synaptic transmission to existing neurons. eLife 6:e19886

    Article  PubMed  PubMed Central  Google Scholar 

  • Akers KG, Martinez-Canabal A et al (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602

    Article  CAS  PubMed  Google Scholar 

  • Allen E (1912) The cessation of the mitosis in the central nervous system of the albino rat. J Comp Neurol 22:547–568

    Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Scharfman HE et al (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Anacker C, Hen R (2017) Adult hippocampal neurogenesis and cognitive flexibility – linking memory and mood. Nat Rev Neurosci 18:335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen P (1975) Isolated brain slices. A new preparation for theoretical and clinical research. Tidsskr Nor Laegeforen 95:349–351

    CAS  PubMed  Google Scholar 

  • Andersen P, Bruland H et al (1961) Activation of the dentate area by septal stimulation. Acta Physiol Scand 51:17–28

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Holmqvist B et al (1966) Excitatory synapses on hippocampal apical dendrites activated by entorhinal stimulation. Acta Physiol Scand 66:461–472

    Article  CAS  PubMed  Google Scholar 

  • Barbieri M, Ossato A et al (2016) Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair Novel Object Recognition in mice: behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 109:254–269

    Article  CAS  PubMed  Google Scholar 

  • Barria A, Muller D et al (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042–2045

    Article  CAS  PubMed  Google Scholar 

  • Benoy A, Dasgupta A et al (2018) Hippocampal area CA2: an emerging modulatory gateway in the hippocampal circuit. Exp Brain Res 236:919–931

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blitzer RD, Connor JH et al (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280:1940–1942

    Article  CAS  PubMed  Google Scholar 

  • Castilla-Ortega E, Santin LJ (2019) Adult hippocampal neurogenesis as a target for cocaine addiction: a review of recent developments. Curr Opin Pharmacol 50:109–116

    Article  PubMed  Google Scholar 

  • Castillo PE, Schoch S et al (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415:327–330

    Article  CAS  PubMed  Google Scholar 

  • Chevaleyre V, Castillo PE (2002) Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc Natl Acad Sci U S A 99:9538–9543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge GL, Kehl SJ et al (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contractor A, Swanson G et al (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209–216

    Article  CAS  PubMed  Google Scholar 

  • Cull-Candy S, Brickley S et al (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  • Derrick BE, York AD et al (2000) Increased granule cell neurogenesis in the adult dentate gyrus following mossy fiber stimulation sufficient to induce long-term potentiation. Brain Res 857:300–307

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal J, Lagace DC (2011) Visualization and genetic manipulation of adult neurogenesis using transgenic mice. Eur J Neurosci 33:1025–1036

    Article  PubMed  Google Scholar 

  • Dolleman-Van der Weel MJ, Witter MP (2000) Nucleus reuniens thalami innervates gamma aminobutyric acid positive cells in hippocampal field CA1 of the rat. Neurosci Lett 278:145–148

    Article  CAS  PubMed  Google Scholar 

  • Duncan K, Ketz N et al (2012) Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 22:389–398

    Article  PubMed  Google Scholar 

  • Enikolopov G, Overstreet-Wadiche L et al (2015) Viral and transgenic reporters and genetic analysis of adult neurogenesis. Cold Spring Harb Perspect Biol 7:a018804

    Article  PubMed  PubMed Central  Google Scholar 

  • Epp JR, Silva Mera R et al (2016) Neurogenesis-mediated forgetting minimizes proactive interference. Nat Commun 7:10838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst A, Alkass K et al (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083

    Article  CAS  PubMed  Google Scholar 

  • Fox CJ, Russell KI et al (2006) Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus 16:907–915

    Article  CAS  PubMed  Google Scholar 

  • Frankland PW, Josselyn SA (2016) Hippocampal neurogenesis and memory clearance. Neuropsychopharmacology 41:382–383

    Article  PubMed  Google Scholar 

  • Galinato MH, Takashima Y et al (2018) Neurogenesis during abstinence is necessary for context-driven methamphetamine-related memory. J Neurosci 38:2029–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge S, Goh EL et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Yang CH et al (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheusi G, Lepousez G et al (2013) Adult-born neurons in the olfactory bulb: integration and functional consequences. Curr Top Behav Neurosci 15:49–72

    Article  PubMed  Google Scholar 

  • Gold AE, Kesner RP (2005) The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus 15:808–814

    Article  PubMed  Google Scholar 

  • Goncalves JT, Schafer ST et al (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914

    Article  CAS  PubMed  Google Scholar 

  • Goodman J, Packard MG (2016) Memory systems and the addicted brain. Front Psychiatry 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray R, Johnston D (1985) Rectification of single GABA-gated chloride channels in adult hippocampal neurons. J Neurophysiol 54:134–142

    Article  CAS  PubMed  Google Scholar 

  • Han J, Li Y et al (2010) Effect of 5-aza-2-deoxycytidine microinjecting into hippocampus and prelimbic cortex on acquisition and retrieval of cocaine-induced place preference in C57BL/6 mice. Eur J Pharmacol 642:93–98

    Article  CAS  PubMed  Google Scholar 

  • Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70:132–137

    Article  CAS  PubMed  Google Scholar 

  • Harris EW, Ganong AH et al (1984) Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 323:132–137

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Hitchcock LN, Lattal KM (2018) Involvement of the dorsal hippocampus in expression and extinction of cocaine-induced conditioned place preference. Hippocampus 28:226–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman AF, Oz M et al (2007) Opposing actions of chronic Delta9-tetrahydrocannabinol and cannabinoid antagonists on hippocampal long-term potentiation. Learn Mem 14:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabetova S, Sacktor TC (2001) Transient translocation of conventional protein kinase C isoforms and persistent downregulation of atypical protein kinase Mzeta in long-term depression. Brain Res Mol Brain Res 95:146–152

    Article  CAS  PubMed  Google Scholar 

  • Hrabetova S, Serrano P et al (2000) Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J Neurosci 20:Rc81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DL, Puente N et al (2013) Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity. Nat Neurosci 16:1049–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihunwo AO, Tembo LH et al (2016) The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res 11:1869–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Tabata K et al (2001) Acute and chronic intracerebroventricular morphine infusions affect long-term potentiation differently in the lateral perforant path. Pharmacol Biochem Behav 70:353–358

    Article  CAS  PubMed  Google Scholar 

  • Itzhak Y, Liddie S et al (2013) Sodium butyrate-induced histone acetylation strengthens the expression of cocaine-associated contextual memory. Neurobiol Learn Mem 102:34–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jedlicka P, Vnencak M et al (2015) Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct 220:47–58

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (1994) The neuron doctrine 1891. J Hist Neurosci 3:3–20

    Article  CAS  PubMed  Google Scholar 

  • Kameyama K, Lee HK et al (1998) Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Tauc L (1965) Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. J Physiol 181:28–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauer JA, Malenka RC et al (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334:250–252

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Song H et al (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr KM, Agster KL et al (2007) Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17:697–708

    Article  PubMed  Google Scholar 

  • Kirkwood A, Bear MF (1994) Homosynaptic long-term depression in the visual cortex. J Neurosci 14:3404–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss J, Csáki A et al (2000) The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: a combined [3H]D-aspartate autoradiographic and immunohistochemical study. Neuroscience 97:657–669

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Saitoh Y et al (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139:814–827

    Article  CAS  PubMed  Google Scholar 

  • Köhler C (1985) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504–522

    Article  PubMed  Google Scholar 

  • Kohr G, Jensen V et al (2003) Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction. J Neurosci 23:10791–10799

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3:760–773

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger DD, Tuffy LP et al (2012) The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr Opin Neurobiol 22:412–422

    Article  CAS  PubMed  Google Scholar 

  • Lacar B, Linker SB et al (2016) Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat Commun 7:11022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HK, Kameyama K et al (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21:1151–1162

    Article  CAS  PubMed  Google Scholar 

  • Lepousez G, Valley MT et al (2013) The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 75:339–363

    Article  CAS  PubMed  Google Scholar 

  • Lepousez G, Nissant A et al (2015) Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron 86:387–401

    Article  CAS  PubMed  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86:9574–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wong TP et al (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Loughlin SE, Foote SL et al (1986) Efferent projections of nucleus locus coeruleus: morphologic subpopulations have different efferent targets. Neuroscience 18:307–319

    Article  CAS  PubMed  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  CAS  PubMed  Google Scholar 

  • Lynch GS, Dunwiddie T et al (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739

    Article  CAS  PubMed  Google Scholar 

  • Lynch G, Larson J et al (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721

    Article  CAS  PubMed  Google Scholar 

  • Maglóczky Z, Acsády L et al (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4:322–334

    Article  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation – a decade of progress? Science 285:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Kauer JA et al (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:81–84

    Article  CAS  PubMed  Google Scholar 

  • Malinow R, Schulman H et al (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866

    Article  CAS  PubMed  Google Scholar 

  • Mandyam CD, Koob GF (2012) The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci 35:250–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markram H, Gerstner W et al (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci 4:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez JL Jr, Derrick BE (1996) Long-term potentiation and learning. Annu Rev Psychol 47:173–203

    Article  PubMed  Google Scholar 

  • Massa F, Koehl M et al (2011) Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity. Proc Natl Acad Sci U S A 108:6644–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki M, Honkura N et al (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor J, Nicoll RA (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4:125–126

    Article  CAS  PubMed  Google Scholar 

  • Mellor J, Nicoll RA et al (2002) Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science 295:143–147

    Article  CAS  PubMed  Google Scholar 

  • Meyers RA, Zavala AR et al (2006) Dorsal hippocampus inhibition disrupts acquisition and expression, but not consolidation, of cocaine conditioned place preference. Behav Neurosci 120:401–412

    Article  CAS  PubMed  Google Scholar 

  • Min MY, Asztely F et al (1998) Long-term potentiation and dual-component quantal signaling in the dentate gyrus. Proc Natl Acad Sci U S A 95:4702–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita W, Lu W et al (2007) Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 52:71–76

    Article  CAS  PubMed  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Remy S (2018) Septo-hippocampal interaction. Cell Tissue Res 373:565–575

    Article  PubMed  Google Scholar 

  • Nagerl UV, Eberhorn N et al (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767

    Article  PubMed  Google Scholar 

  • Niibori Y, Yu TS et al (2012) Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun 3:1253

    Article  PubMed  Google Scholar 

  • North A, Swant J et al (2013) Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit. Synapse 67:245–257

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Opendak M, Offit L et al (2016) Lasting adaptations in social behavior produced by social disruption and inhibition of adult neurogenesis. J Neurosci 36:7027–7038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos T, Soykan T (2011) The role of collybistin in gephyrin clustering at inhibitory synapses: facts and open questions. Front Cell Neurosci 5:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos T, Korte M et al (2007) Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J 26:3888–3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelkey KA, Chittajallu R et al (2017) Hippocampal GABAergic inhibitory interneurons. Physiol Rev 97:1619–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penasco S, Rico-Barrio I et al (2019) Endocannabinoid long-term depression revealed at medial perforant path excitatory synapses in the dentate gyrus. Neuropharmacology 153:32–40

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Piskorowski RA, Chevaleyre V (2012) Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons. Cell Mol Life Sci 69:75–88

    Article  CAS  PubMed  Google Scholar 

  • Pitkänen A, Pikkarainen M et al (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391

    Article  PubMed  Google Scholar 

  • Pu L, Bao GB et al (2002) Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci 22:1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner, New York

    Google Scholar 

  • Roberto M, Nelson TE et al (2002) Long-term potentiation in the rat hippocampus is reversibly depressed by chronic intermittent ethanol exposure. J Neurophysiol 87:2385–2397

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2015) Diluted connectivity in pattern association networks facilitates the recall of information from the hippocampus to the neocortex. Prog Brain Res 219:21–43

    Article  PubMed  Google Scholar 

  • Salmanzadeh F, Fathollahi Y et al (2003) Dependence on morphine impairs the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Brain Res 965:108–113

    Article  CAS  PubMed  Google Scholar 

  • Saxe MD, Battaglia F et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103:17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluter OM, Schnell E et al (1999) Rabphilin knock-out mice reveal that rabphilin is not required for rab3 function in regulating neurotransmitter release. J Neurosci 19:5834–5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Pak DT (2000) Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu Rev Physiol 62:755–778

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Berg DA et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17:360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipman SL, Nicoll RA (2012) A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron 76:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder JS, Grigereit L et al (2016) A transgenic rat for specifically inhibiting adult neurogenesis. eNeuro 3(3):ENEURO.0064-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltesz I, Jones RS (1995) The direct perforant path input to CA1: excitatory or inhibitory? Hippocampus 5:101–103

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC, Czernik AJ et al (1989) Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  CAS  PubMed  Google Scholar 

  • Tashiro A, Sandler VM et al (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442:929–933

    Article  CAS  PubMed  Google Scholar 

  • Thompson AM, Swant J et al (2004) Modulation of long-term potentiation in the rat hippocampus following cocaine self-administration. Neuroscience 127:177–185

    Article  CAS  PubMed  Google Scholar 

  • Tremwel MF, Hunter BE (1994) Effects of chronic ethanol ingestion on long-term potentiation remain even after a prolonged recovery from ethanol exposure. Synapse 17:141–148

    Article  CAS  PubMed  Google Scholar 

  • Trommer BL, Liu YB et al (1996) Long-term depression at the medial perforant path-granule cell synapse in developing rat dentate gyrus. Brain Res Dev Brain Res 96:97–108

    Article  CAS  PubMed  Google Scholar 

  • Tsai ST, Liew HK et al (2019) Harnessing neurogenesis and neuroplasticity with stem cell treatment for addictive disorders. Cell Transplant 28:1127–1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  CAS  PubMed  Google Scholar 

  • van Dam EJ, Ruiter B et al (2002) N-methyl-D-aspartate-induced long-term depression is associated with a decrease in postsynaptic protein kinase C substrate phosphorylation in rat hippocampal slices. Neurosci Lett 320:129–132

    Article  PubMed  Google Scholar 

  • van Groen T, Wyss JM (1990) Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302:515–528

    Article  PubMed  Google Scholar 

  • van Groen T, Kadish I et al (2002) Species differences in the projections from the entorhinal cortex to the hippocampus. Brain Res Bull 57:553–556

    Article  PubMed  Google Scholar 

  • van Strien NM, Cappaert NL et al (2009) The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 10:272–282

    Article  PubMed  Google Scholar 

  • Vertes RP, Fortin WJ et al (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Scott BW et al (2000) Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol 42:248–257

    Article  CAS  PubMed  Google Scholar 

  • Weisskopf MG, Castillo PE et al (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265:1878–1882

    Article  CAS  PubMed  Google Scholar 

  • Wigstrom H, Gustafsson B et al (1986) Mode of action of excitatory amino acid receptor antagonists on hippocampal long-lasting potentiation. Neuroscience 17:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Witter MP (1993) Organization of the entorhinal-hippocampal system: a review of current anatomical data. Hippocampus 3 Spec No:33–44

    Google Scholar 

  • Wyss JM, Van Groen T (1992) Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus 2:1–11

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Sudhof TC (2013) A neural circuit for memory specificity and generalization. Science 339:1290–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki Y, Jia Y et al (2006) Nicotine exposure in vivo induces long-lasting enhancement of NMDA receptor-mediated currents in the hippocampus. Eur J Neurosci 23:1819–1828

    Article  PubMed  Google Scholar 

  • Yasuda H, Barth AL et al (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6:15–16

    Article  CAS  PubMed  Google Scholar 

  • Yun S, Reynolds RP et al (2016) Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Med 22:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Deng W et al (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Homma KJ et al (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funds from the Department of Veterans Affairs (BX003304) and National Institute on Alcoholism and Alcohol Abuse (AA020098) provided salary support. A part of the chapter has been recently published as a review article by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitra D. Mandyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mandyam, C.D. (2022). The Hippocampus and Addiction: Focus on Plasticity and Circuitry in the Hippocampus. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-92392-1_24

Download citation

Publish with us

Policies and ethics