Skip to main content

Antimicrobial Marine-Derived Materials

  • Living reference work entry
  • First Online:
Handbook of the Extracellular Matrix

Abstract

Currently, the next generation of natural-based antimicrobial systems has been developed, showing the potential to prevent and eliminate microorganisms in various environments. Within this context, the antibacterial activity of marine-derived polymers supports the creation of antimicrobial-based formulations as alternative strategy for antibiotic use. Marine renewable sources such as crab shells, squid pens, and mollusks are the sustainable feedstock of high-value polymers, extracts, and bioactive compounds. In addition, marine-derived polymers show low cost, high availability, biodegradability, and biocompatibility. Furthermore, they can be easily designed as 2D/3D-based structures, namely, membranes, hydrogels, microfibers, and scaffolds, opening a wide range of possibilities for biomedicine use. This chapter discusses the latest developments in antimicrobial systems based on marine-derived structures, focusing on alginate, carrageenan, chitin/chitosan, collagen, chondroitin sulfate, fucoidan, gelatin, hyaluronic acid, and ulvan. Moreover, their mechanism of action and their biomedical applications are also examined, where more close international collaboration is needed to address those issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

Ag:

Silver

AgNPs:

Silver nanoparticles

AMPs:

Antimicrobial peptides

AMR:

Antimicrobial resistance

BBR:

Berberine

BBR-F:

Chelidonium majus L

BL:

Blue light

BMSCs:

Bone marrow stem cells

CEC:

N-Carboxyethyl chitosan

Cht:

Chitosan

Cht-FA:

Chitosan-fatty acid

Cht-NPs:

Chitosan nanoparticles

CNF:

Chitin nanofibrils

ColChHAmod:

Collagen/chitosan/lysine-modified hyaluronic acid based hydrogels

-COOH:

Carboxylic group

CS:

Chondroitin sulfate

CTP-SA:

Sodium alginate hydrogel composite

Cu2O:

Cubic cuprous oxide

CUR:

Curcumin

DD:

Degree of deacetylation

E. coli :

Escherichia coli

ECM:

Extracellular matrix

FC:

Fish collagen

FDA:

US Food and Drug Administration

FGF:

Fibroblast growth factors

FGFs:

β-Fibroblast growth factors

G−:

Gram-negative bacteria

G+:

Gram-positive bacteria

GO:

Graphene oxide

GO-NPs:

Graphene oxide nanoparticles

HA:

Hyaluronic acid

HANr:

Hydroxyapatite nanorods

IL:

Ionic liquid

IO-NPs:

Iron oxide nanoparticles

MC:

Mammalian collagen

MC:

Marine collagen

MMC:

Mammalian collagen

MP:

Marine peptide

MW:

Molecular weight

NO:

Nitric oxide

NPs:

Nanoparticles

OCD:

Osteocondral defects

OH:

Hydroxyl group

OHA-AT:

Oxidized hyaluronic acid-graft-aniline tetramer

P. aeruginosa :

Pseudomonas aeruginosa

PLA:

Polylactic acid

PU:

Polyurethane

ROS:

Reactive oxygen species

S. aureus :

Staphylococcus aureus

SNAP:

S-Nitroso-N-acetylpenicillamine

SSD:

Silver sulfadiazine

TEOS:

Tetraethyl orthosilicate

TERM:

Tissue engineering and regenerative medicine

TGF-β1:

Transforming growth factor

TiO2@PDA:

Polydopamine-coated titanium dioxide

VEGF:

Vascular endothelial growth factor

ZnO:

Zinc oxide

ι:

Iota

κ:

Kappa

λ:

Lambda

References

  • Abdallah MM, Fernández N, Matias AA, Bronze MDR. Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: extraction and purification methods. Carbohydr Polym. 2020;243:116441.

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman RM, Abdel-Mohsen AM, Zboncak M, Frankova J, Lepcio P, Kobera L, Steinhart M, Pavlinak D, Spotaz Z, Sklenářévá R, Brus J, Jancar J. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers: extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites. Carbohydr Polym. 2020;235:115951.

    Article  CAS  PubMed  Google Scholar 

  • Abdullah JAA, Yemişken E, Guerrero A, Romero A. Marine collagen-based antibacterial film reinforced with graphene and iron oxide nanoparticles. Int J Mol Sci. 2023;24:648.

    Article  CAS  Google Scholar 

  • Ahmed Z, Powell LC, Matin N, Mearns-Spragg A, Thornton CA, Khan IM, Francis LW. Jellyfish collagen: a biocompatible collagen source for 3D scaffold fabrication and enhanced chondrogenicity. Mar Drugs. 2021;19:405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliakbar Ahovan Z, Khosravimelal S, Eftekhari BS, Mehrabi S, Hashemi A, Eftekhari S, Brouki Milan P, Mobaraki M, Seifalian AM, Gholipourmalekabadi M. Thermo-responsive chitosan hydrogel for healing of full-thickness wounds infected with XDR bacteria isolated from burn patients: in vitro and in vivo animal model. Int J Biol Macromol. 2020;164:4475–86.

    Article  CAS  PubMed  Google Scholar 

  • Almatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res. 2018;128:288–305.

    Article  PubMed  Google Scholar 

  • Al-Nimry S, Dayah AA, Hasan I, Daghmash R. Cosmetic, biomedical and pharmaceutical applications of fish gelatin/hydrolysates. Mar Drugs. 2021;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ana P, Nathalie B, Gilles B, Daniel R, Tomas MS, Yolanda FP. Anti-Herpes simplex virus (HSV-1) activity and antioxidant capacity of carrageenan-rich enzymatic extracts from Solieria filiformis (Gigartinales, Rhodophyta). Int J Biol Macromol. 2021;168:322–30.

    Article  CAS  PubMed  Google Scholar 

  • Ardean C, Davidescu CM, Sorina Nemeş N, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Musta V. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int J Mol Sci. 2021;22:7449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babutan I, Lucaci A-D, Botiz I. Antimicrobial polymeric structures assembled on surfaces. Polymers. 2021;13:1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Q, Zheng C, Chen W, Sun N, Gao Q, Liu J, Hu F, Pimpi S, Yan X, Zhang Y, Lu T. Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Mater Adv. 2022;3:6707–27.

    Article  CAS  Google Scholar 

  • Bano I, Arshad M, Yasin T, Ghauri MA. Preparation, characterization and evaluation of glycerol plasticized chitosan/PVA blends for burn wounds. Int J Biol Macromol. 2019;124:155–62.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AI, Coutinho AJ, Costa Lima SA, Reis S. Marine polysaccharides in pharmaceutical applications: fucoidan and chitosan as key players in the drug delivery match field. Mar Drugs. 2019;17:654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastiaens L, Soetemans L, D’hondt, E. & Elst, K. Sources of chitin and chitosan and their isolation. In: Lambertus AM, Broek VD, Boeriu C, editors. Chitin and chitosan. New Jersey, USA: Wiley; 2019.

    Google Scholar 

  • Bergonzi C, Bianchera A, Remaggi G, Ossiprandi MC, Bettini R, Elviri L. 3D printed chitosan/alginate hydrogels for the controlled release of silver sulfadiazine in wound healing applications: design, characterization and antimicrobial activity. Micromachines (Basel). 2023;14:137.

    Article  PubMed  Google Scholar 

  • Biniaś D, Biniaś W. Preparation of nanocrystals and chitin microfibrils. Progress on Chemistry and Application of Chitin and its Derivatives, XXVII volume, 43. 2022.

    Google Scholar 

  • Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: a review. PRO. 2020;8:1173.

    CAS  Google Scholar 

  • Cindana Mo’o FR, Wilar G, Devkota HP, Wathoni N. Ulvan, a polysaccharide from macroalga Ulva sp.: a review of chemistry, biological activities and potential for food and biomedical applications. Appl Sci. 2020;10:5488.

    Article  Google Scholar 

  • Claverie M, Mcreynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-derived polymeric materials and biomimetics: an overview. Polymers (Basel). 2020;12:1002.

    Article  CAS  PubMed  Google Scholar 

  • WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2022 – 2020 data. 2022.

    Google Scholar 

  • Ecevit K, Silva E, Rodrigues LC, Aroso I, Barros AA, Silva JM, Reis RL. Surface functionalization of ureteral stents-based polyurethane: engineering antibacterial coatings. Materials. 2022;15:1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echave MC, Hernáez-Moya R, Iturriaga L, Pedraz JL, Lakshminarayanan R, Dolatshahi-Pirouz A, Taebnia N, Orive G. Recent advances in gelatin-based therapeutics. Expert Opin Biol Ther. 2019;19:773–9.

    Article  CAS  PubMed  Google Scholar 

  • Elbialy ZI, Atiba A, Abdelnaby A, Al-Hawary II, Elsheshtawy A, El-Serehy HA, Abdel-Daim MM. Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression. BMC Vet Res. 2020;16:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ennaas N, Hammami R, Gomaa A, Bédard F, Biron É, Subirade M, Beaulieu L, Fliss I. Collagencin, an antibacterial peptide from fish collagen: activity, structure and interaction dynamics with membrane. Biochem Biophys Res Commun. 2016;473:642–7.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes L, Resende C, Tavares D, Soares G, Castro L, Granjeiro J. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering. Polímeros. 2011;21:1–6.

    Article  CAS  Google Scholar 

  • Ferreira AC, Bomfim MRQ, Da Costa Sobrinho CHB, Boaz DTL, Da Silva Lira R, Fontes VC, Arruda MO, Zago PMW, Filho C, Dias CJM, Da Rocha Borges MO, Ribeiro RM, Bezerra CWB, Penha RS. Characterization, antimicrobial and cytotoxic activity of polymer blends based on chitosan and fish collagen. AMB Express. 2022;12:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueira DR, Miguel SP, De Sá KD, Correia IJ. Production and characterization of polycaprolactone- hyaluronic acid/chitosan- zein electrospun bilayer nanofibrous membrane for tissue regeneration. Int J Biol Macromol. 2016;93:1100–10.

    Article  CAS  PubMed  Google Scholar 

  • Fitton HJ, Stringer DS, Park AY, Karpiniec SN. Therapies from Fucoidan: new developments. Mar Drugs. 2019;17:571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv. 2015;12:1547–63.

    Article  CAS  PubMed  Google Scholar 

  • Geahchan S, Baharlouei P, Rahman A. Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar Drugs. 2022;20:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilarska A, Lewandowska-Łańcucka J, Guzdek-Zając K, Karewicz A, Horak W, Lach R, Wójcik K, Nowakowska M. Bioactive yet antimicrobial structurally stable collagen/chitosan/lysine functionalized hyaluronic acid – based injectable hydrogels for potential bone tissue engineering applications. Int J Biol Macromol. 2020;155:938–50.

    Article  CAS  PubMed  Google Scholar 

  • Grimaudo MA, Concheiro A, Alvarez-Lorenzo C. Crosslinked Hyaluronan electrospun nanofibers for ferulic acid ocular delivery. Pharmaceutics. 2020;12:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri A, Triunfo M, Scieuzo C, Ianniciello D, Tafi E, Hahn T, Zibek S, Salvia R, De Bonis A, Falabella P. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci Rep. 2022;12:8084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrun N, Oktawati S, Haryo HM, Syafar IF, Almaidah ANJSRIP. Effectiveness of fucoidan extract from brown algae to inhibit bacteria causes of oral cavity damage. Sys Rev Pharm. 2020;11:686–93.

    CAS  Google Scholar 

  • Hegde V, Uthappa UT, Altalhi T, Jung H-Y, Han SS, Kurkuri MD. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Mater Today Commun. 2022;33:104813.

    Article  CAS  Google Scholar 

  • Hoda M, et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018;24:747–67.

    Google Scholar 

  • Iliou K, Kikionis S, Ioannou E, Roussis V. Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications. Mar Drugs. 2022;20:314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insuasti-Cruz E, Suárez-Jaramillo V, Mena Urresta KA, Pila-Varela KO, Fiallos-Ayala X, Dahoumane SA, Alexis F. Natural biomaterials from biodiversity for healthcare applications. Adv Healthc Mater. 2022;11:2101389.

    Article  CAS  Google Scholar 

  • Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: a review. Carbohydr Polym. 2022;281:119045.

    Article  CAS  PubMed  Google Scholar 

  • Jang Y, Shin H, Lee MK, Kwon OS, Shin JS, Kim Y-I, Kim CW, Lee H-R, Kim M. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep. 2021;11:821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Xu M, Liu Y, Ji Z, Dai K, Zhang L, Wang L, Ye F, Chen G, Lv Z. Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids Surf B Biointerfaces. 2020;194:111168.

    Article  CAS  PubMed  Google Scholar 

  • Kadokawa J-I. Application of ionic liquids for the functional materialization of chitin. Mater Adv. 2022;3:3355–64.

    Article  CAS  Google Scholar 

  • Khan MUA, Razak SIA, Haider S, Mannan HA, Hussain J, Hasan A. Sodium alginate-f-GO composite hydrogels for tissue regeneration and antitumor applications. Int J Biol Macromol. 2022;208:475–85.

    Article  CAS  PubMed  Google Scholar 

  • Kidgell JT, Magnusson M, De Nys R, Glasson CRK. Ulvan: a systematic review of extraction, composition and function. Algal Res. 2019;39:101422.

    Article  Google Scholar 

  • Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomol Ther. 2018;8:4.

    Google Scholar 

  • Kumar BYS, Isloor AM, Kumar GCM, Inamuddin, Asiri AM. Nanohydroxyapatite reinforced chitosan composite hydrogel with Tunable mechanical and biological properties for cartilage regeneration. Sci Rep. 2019;9:15957.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Hao LT, Park J, Oh DX, Hwang DS. Nanochitin and Nanochitosan: chitin nanostructure engineering with multiscale properties for biomedical and environmental applications. Adv Mater. 2023;35:2203325.

    Article  CAS  Google Scholar 

  • Lin Z, Wu T, Wang W, Li B, Wang M, Chen L, Xia H, Zhang T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol. 2019;140:330–42.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol. 2023;225:526–43.

    Article  CAS  PubMed  Google Scholar 

  • Lv L-C, Huang Q-Y, Ding W, Xiao X-H, Zhang H-Y, Xiong L-X. Fish gelatin: the novel potential applications. J Funct Foods. 2019;63:103581.

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Karimi MH, Soltaniniya M, Massoumi B. In vitro evaluation of sustained ciprofloxacin release from κ-carrageenan-crosslinked chitosan/hydroxyapatite hydrogel nanocomposites. Int J Biol Macromol. 2019;126:443–53.

    Article  CAS  PubMed  Google Scholar 

  • Massironi A, Morelli A, Grassi L, Puppi D, Braccini S, Maisetta G, Esin S, Batoni G, Della Pina C, Chiellini F. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles. Carbohydr Polym. 2019;203:310–21.

    Article  CAS  PubMed  Google Scholar 

  • Morokutti-Kurz M, Fröba M, Graf P, Große M, Grassauer A, Auth J, Schubert U, Prieschl-Grassauer E. Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro. PLoS One. 2021;16:e0237480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthulakshmi L, Pavithra U, Sivaranjani V, Balasubramanian N, Sakthivel KM, Pruncu CI. A novel ag/carrageenan–gelatin hybrid hydrogel nanocomposite and its biological applications: preparation and characterization. J Mech Behav Biomed Mater. 2021;115:104257.

    Article  CAS  PubMed  Google Scholar 

  • Neamtu B, Barbu A, Negrea MO, Berghea-Neamțu CȘ, Popescu D, Zăhan M, Mireșan V. Carrageenan-based compounds as wound healing materials. Int J Mol Sci. 2022;23:9117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011;29:464–72.

    Article  CAS  PubMed  Google Scholar 

  • Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y, Huang S, Pan L, Yang D. Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar Drugs. 2020;18:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Q-Q, Hu Z, Lin Z-P, Quan W-Y, Deng Y-F, Li S-D, Li P-W, Chen Y. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int J Biol Macromol. 2018;112:1191–8.

    Article  CAS  PubMed  Google Scholar 

  • Pérez MJ, Falqué E, Domínguez H. Antimicrobial action of compounds from marine seaweed. Mar Drugs. 2016;14:52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prelipcean AM, Iosageanu A, Gaspar-Pintiliescu A, Moldovan L, Craciunescu O, Negreanu-Pirjol T, Negreanu-Pirjol B, Mitran RA, Marin M, D’amora U. Marine and agro-industrial by-products valorization intended for topical formulations in wound healing applications. Materials (Basel). 2022;15:3507.

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J. 2019;362:548–60.

    Article  CAS  Google Scholar 

  • Rao SS, Saptami K, Venkatesan J, Rekha PD. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: characterization with assessment of biocompatibility and antimicrobial activity. Int J Biol Macromol. 2020;163:745–55.

    Article  CAS  PubMed  Google Scholar 

  • Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.

    Article  CAS  Google Scholar 

  • Rnjak-Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and proteoglycan-based biomaterials: current trends and future perspectives. Adv Healthc Mater. 2018;7:e1701042.

    Article  PubMed  Google Scholar 

  • Saedi S, Shokri M, Priyadarshi R, Rhim J-W. Carrageenan-based antimicrobial films integrated with sulfur-coated iron oxide nanoparticles (Fe3O4@SNP). ACS Appl Polym Mater. 2021;3:4913–23.

    Article  CAS  Google Scholar 

  • Salvatore L, Gallo N, Natali ML, Campa L, Lunetti P, Madaghiele M, Blasi FS, Corallo A, Capobianco L, Sannino A. Marine collagen and its derivatives: versatile and sustainable bio-resources for healthcare. Mater Sci Eng C Mater Biol Appl. 2020;113:110963.

    Article  CAS  PubMed  Google Scholar 

  • Sedayu BB, Cran MJ, Bigger SW. A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr Polym. 2019;216:287–302.

    Article  CAS  PubMed  Google Scholar 

  • Shah SA, Sohail M, Khan SA, Kousar M. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. Mater Sci Eng C Mater Biol Appl. 2021;126:112169.

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Sahu K, Singh SP, Jain B. Wound healing activity of curcumin conjugated to hyaluronic acid: in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46:1009–17.

    Article  CAS  PubMed  Google Scholar 

  • Silva SS, Gomes JM, Rodrigues LC, Reis RL. Marine-derived polymers in ionic liquids: architectures development and biomedical applications. Mar Drugs. 2020a;18:346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva SS, Rodrigues LC, Fernandes EM, Reis RL. Chapter 1 – fundamentals on biopolymers and global demand. In: De Moraes MA, Da Silva CF, Vieira RS, editors. Biopolymer membranes and films. Elsevier; 2020b.

    Google Scholar 

  • Silva SS, Gomes JM, Rodrigues LC, Reis RL. Chitin and its derivatives. In: Oliveira JM, Radhouani H, Reis RL, editors. Polysaccharides of microbial origin: biomedical applications. Cham: Springer International Publishing; 2022.

    Google Scholar 

  • Tran TTV, Truong HB, Tran NHV, Quach TMT, Nguyen TN, Bui ML, Yuguchi Y, Thanh TTT. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat Prod Res. 2018;32:2291–6.

    Article  CAS  PubMed  Google Scholar 

  • Tsai L-C, Tsai M-L, Lu K-Y, Mi F-L. Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles. Res Chem Intermed. 2018;44:4855–71.

    Article  CAS  Google Scholar 

  • Tziveleka L-A, Pippa N, Ioannou E, Demetzos C, Roussis V. Development of ulvan-containing liposomes as antibacterial drug delivery platforms. J Funct Biomater. 2022;13:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcarcel J, Novoa-Carballal R, Pérez-Martín RI, Reis RL, Vázquez JA. Glycosaminoglycans from marine sources as therapeutic agents. Biotechnol Adv. 2017;35:711–25.

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraj R, Altaff K, Lakshmanan G, Jayaprakashvel M, Mickymaray S, Gunapriya R, Palanisamy M, Alothaim AS. Inhibitory activity of chitin, (2-acetamido-2-deoxy-hexopyranose) against penicillin-binding proteins of staphylococcus aureus. Coatings. 2022;12:1854.

    Article  CAS  Google Scholar 

  • Wan M-C, Qin W, Lei C, Li Q-H, Meng M, Fang M, Song W, Chen J-H, Tay F, Niu L-N. Biomaterials from the sea: future building blocks for biomedical applications. Bioact Mater. 2021;6:4255–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xing M, Cao Q, Ji A, Liang H, Song S. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies. Mar Drugs. 2019;17:183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warowicka A, Kościński M, Waszczyk M, Goździcka-Józefiak A. Berberine and its derivatives in collagen matrices as antimicrobial agents. MRS Commun. 2022;12:336–42.

    Article  CAS  Google Scholar 

  • Wei L, Tan J, Li L, Wang H, Liu S, Chen J, Weng Y, Liu T. Chitosan/alginate hydrogel dressing loaded FGF/VE-cadherin to accelerate full-thickness skin regeneration and more Normal skin repairs. Int J Mol Sci. 2022;23:1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D-Y, Wang S-S, Wu C-S. Antibacterial properties and cytocompatibility of biobased nanofibers of fish scale gelatine, modified polylactide, and freshwater clam shell. Int J Biol Macromol. 2020;165:1219–28.

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Patocka J, Nepovimova E, Oleksak P, Valis M, Wu W, Kuca K. Marine invertebrate peptides: antimicrobial peptides. Front Microbiol. 2021;12:785085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhao S, Weng Z, Zhang W, Wan X, Cui T, Ye J, Liao L, Wang X. Jelly-inspired injectable guided tissue regeneration strategy with shape auto-matched and dual-light-defined antibacterial/osteogenic pattern switch properties. ACS Appl Mater Interfaces. 2020;12:54497–506.

    Article  CAS  PubMed  Google Scholar 

  • Zamboni F, Wong CK, Collins MN. Hyaluronic acid association with bacterial, fungal and viral infections: can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioactive Materials. 2023;19:458–73.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang X, Cao Q, Wu S, Wang XQ, Peng N, Zeng D, Liao J, Xu H. Facile fabrication of chitin/ZnO composite hydrogels for infected wound healing. Biomater Sci. 2022a;10:5888–99.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yang Z, Xu H, Liu Y, Yang X, Sun T, Lu X, Shi F, Yang Q, Chen W, Duan H, Ling Y. Synthesis, antifungal activity, and 3D-QASR of novel 1,2,3,4-tetrahydroquinoline derivatives containing a pyrimidine ether scaffold as chitin synthase inhibitors. J Agric Food Chem. 2022b;70:9262–75.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Chen R, Wang J, Lu J, Yu T, Wu X, Xu S, Li Z, Jie C, Cao R, Yang Y, Li Y, Meng D. Biphasic fish collagen scaffold for osteochondral regeneration. Mater Des. 2020a;195:108947.

    Article  CAS  Google Scholar 

  • Zhou L, Xu T, Yan J, Li X, Xie Y, Chen H. Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocoll. 2020b;104:105702.

    Article  CAS  Google Scholar 

  • Zhu M, Ge L, Lyu Y, Zi Y, Li X, Li D, Mu C. Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydr Polym. 2017;174:1051–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang H, Shao J, Wu P, Yu G, Fu K, Sun Z, Cao M, Liu Y, Zhou Y. Nitric oxide releasing alginate microspheres for antimicrobial application. Int J Biol Macromol. 2023;224:1244–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors especially acknowledge financial support from Portuguese FCT (SFRH/BPD/93697/2013 and CEECIND/01306/2018), and through Northern Portugal Operation Program (NORTE2020), under the scope of the project TERM RES Hub-Infraestrutura Científica para a Engenharia de Tecidos e Medicina Regenerativa, Refª Norte-01-0145-FEDER-02219015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone S. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Silva, S.S., Fernandes, E.M., Rodrigues, L.C., Reis, R.L. (2023). Antimicrobial Marine-Derived Materials. In: Maia, F.R.A., Oliveira, J.M., Reis, R.L. (eds) Handbook of the Extracellular Matrix. Springer, Cham. https://doi.org/10.1007/978-3-030-92090-6_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92090-6_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92090-6

  • Online ISBN: 978-3-030-92090-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics