Skip to main content

Biomedical Applications and Biosafety Profile of Carbon Nanotubes-Based Composites

  • Reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Carbon nanotubes (CNTs) have attracted a lot of attention due to their unique mechanical strength, electrical and physicochemical properties as well as thermal and chemical stability for a wide range of biomedical applications. Conventional biomedical materials can be modified using CNTs in order to enhance the mechanical strength, electrical properties and biocompatibility. Various multifunctional composites have been manufactured using CNTs by combining them with different polymers, inorganic and biological materials. Because of these attributes, CNTs-based composites can be applied in a variety of biomedical applications, such as electrochemical sensors, antimicrobial coatings, tissue engineering and neural implants. Despite extensive research, various biomedical applications of CNTs-based composites are still restricted to laboratory. However, biosafety profile/toxicity of CNTs is a major concern before applying CNTs-based composites to biomedical devices. In this chapter, study on the development, biomedical applications, and biosafety profile/toxicity of CNTs-based composites have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Van Tassel PR (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale 2(9):1789–1794

    Article  CAS  Google Scholar 

  • Asuri P, Karajanagi SS, Kane RS, Dordick JS (2007) Polymer–nanotube–enzyme composites as active antifouling films. Small 3(1):50–53

    Article  CAS  Google Scholar 

  • Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E, Agarwal A (2007) Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28(4):618–624

    Article  CAS  Google Scholar 

  • Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468

    Article  CAS  Google Scholar 

  • Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M (2011) Bone formation on carbon nanotube composite. J Biomed Mater Res A 96(1):75–82

    Article  Google Scholar 

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577

    Article  Google Scholar 

  • Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41(1):121–125

    Article  CAS  Google Scholar 

  • Chen Y, Gan C, Zhang T, Yu G, Bai P, Kaplan A (2005) Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl Phys Lett 86(25):251905

    Article  Google Scholar 

  • Chen Y, Zhang YQ, Zhang TH, Gan CH, Zheng CY, Yu G (2006) Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying. Carbon 44(1):37–45

    Article  CAS  Google Scholar 

  • Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85

    Article  CAS  Google Scholar 

  • Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat Res, Fundam Mol Mech 553(1–2):5–9

    Article  CAS  Google Scholar 

  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Article  Google Scholar 

  • Edwards SL, Church JS, Werkmeister JA, Ramshaw JA (2009) Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials 30(9):1725–1731

    Article  CAS  Google Scholar 

  • Gheith MK, Sinani VA, Wicksted JP, Matts RL, Kotov NA (2005) Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv Mater 17(22):2663–2670

    Article  CAS  Google Scholar 

  • Ghindilis AL, Atanasov P, Wilkins E (1997) Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanalysis 9(9):661–674

    Article  CAS  Google Scholar 

  • Griffith RW, Humphrey DR (2006) Long-term gliosis around chronically implanted platinum electrodes in the rhesus macaque motor cortex. Neurosci Lett 406(1–2):81–86

    Article  CAS  Google Scholar 

  • Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, Lee BK, Shin DS, Kim HE (2009) Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater 5(8):3205–3214

    Article  CAS  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  CAS  Google Scholar 

  • Hu H, Ni Y, Montana V, Haddon RC, Parpura V (2004) Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 4(3):507–511

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Iwasa TY, Matsushita T, Sugimoto Y, Kiyoku H, Kozaki T, Umemoto H, Sano M (1997) High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput Mater Sci 8:341–348

    Article  Google Scholar 

  • Jell G, Verdejo R, Safinia L, Shaffer MS, Stevens MM, Bismarck A (2008) Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. J Mater Chem 18(16):1865–1872

    Article  CAS  Google Scholar 

  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  Google Scholar 

  • Kam NWS, Jan E, Kotov NA (2009) Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett 9(1):273–278

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413

    Article  CAS  Google Scholar 

  • Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  • Li Y, Wang P, Wang L, Lin X (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22(12):3120–3125

    Article  CAS  Google Scholar 

  • Li X, Gao H, Uo M, Sato Y, Akasaka T, Feng Q, Cui F, Liu X, Watari F (2009) Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res A 91(1):132–139

    Article  Google Scholar 

  • MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP (2005) Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 74(3):489–496

    Article  Google Scholar 

  • Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V (2009) Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett 9(1):264–268

    Article  CAS  Google Scholar 

  • Marion-Ferey K, Pasmore M, Stoodley P, Wilson S, Husson GP, Costerton JW (2003) Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. J Hosp Infect 53(1):64–71

    Article  CAS  Google Scholar 

  • Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14(3):175–182

    Article  CAS  Google Scholar 

  • Michael EG (2008) Immobilized enzyme–single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Chem Commun 22:2529–2531

    Google Scholar 

  • Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746

    Article  CAS  Google Scholar 

  • Narayan RJ, Berry CJ, Brigmon RL (2005) Structural and biological properties of carbon nanotube composite films. Mater Sci Eng B 123(2):123–129

    Article  Google Scholar 

  • Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901

    Article  CAS  Google Scholar 

  • Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–470

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423

    Article  CAS  Google Scholar 

  • Raja PM, Connolley J, Ganesan GP, Ci L, Ajayan PM, Nalamasu O, Thompson DM (2007) Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol Lett 169(1):51–63

    Article  CAS  Google Scholar 

  • Saleemi MA, Palanisamy NK, Wong EH (2018) Alternative approaches to combat medicinally important biofilm-forming pathogens. In: Antimicrobials, antibiotic resistance, Antibiofilm strategies and activity methods. IntechOpen

    Google Scholar 

  • Saleemi MA, Fouladi MH, Yong PVC, Wong EH (2020a) Elucidation of antimicrobial activity of non-covalently dispersed carbon nanotubes. Materials 13(7):1676

    Article  CAS  Google Scholar 

  • Saleemi MA, Kong YL, Yong PVC, Wong EH (2020b) An overview of recent development in therapeutic drug carrier system using carbon nanotubes. J Drug Deliv Sci Technol 59:101855

    Article  CAS  Google Scholar 

  • Saleemi MA, Yong PVC, Wong EH (2020c) Investigation of antimicrobial activity and cytotoxicity of synthesized surfactant-modified carbon nanotubes/polyurethane electrospun nanofibers. Nano-Struct Nano-Objects 24:100612

    Article  CAS  Google Scholar 

  • Sato Y, Yokoyama A, Shibata KI, Akimoto Y, Ogino SI, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol BioSyst 1(2):176–182

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Phys Lung Cell Mol Phys 289(5):L698–L708

    CAS  Google Scholar 

  • Simmons TJ, Lee SH, Park TJ, Hashim DP, Ajayan PM, Linhardt RJ (2009) Antiseptic single wall carbon nanotube bandages. Carbon 47(6):1561–1564

    Article  CAS  Google Scholar 

  • Singh MK, Shokuhfar T, Gracio JJDA, de Sousa ACM, Fereira JMDF, Garmestani H, Ahzi S (2008) Hydroxyapatite modified with carbon-nanotube-reinforced poly (methyl methacrylate): a nanocomposite material for biomedical applications. Adv Funct Mater 18(5):694–700

    Article  CAS  Google Scholar 

  • Stice P, Gilletti A, Panitch A, Muthuswamy J (2007) Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex. J Neural Eng 4(2):42

    Article  Google Scholar 

  • Teo WE, Ramakrishna S (2009) Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos Sci Technol 69(11–12):1804–1817

    Article  CAS  Google Scholar 

  • Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elías AL, Munoz-Sandoval E, Cano-Márquez AG, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Article  Google Scholar 

  • Thelin J, Jörntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N, Linsmeier CE (2011) Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One 6(1):e16267

    Article  CAS  Google Scholar 

  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol in Vitro 20(7):1202–1212

    Article  CAS  Google Scholar 

  • Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61(12):1097–1114

    Article  CAS  Google Scholar 

  • Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426

    Article  CAS  Google Scholar 

  • Wang J, Musameh M (2003a) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75(9):2075–2079

    Article  CAS  Google Scholar 

  • Wang J, Musameh M (2003b) Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst 128(11):1382–1385

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125

    Article  CAS  Google Scholar 

  • Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41):412001

    Article  Google Scholar 

  • Yang T, Zhou N, Zhang Y, Zhang W, Jiao K, Li G (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24(7):2165–2170

    Article  CAS  Google Scholar 

  • Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Article  CAS  Google Scholar 

  • Zhao L, Gao L (2004) Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon 42(2):423–426

    Article  CAS  Google Scholar 

  • Zhao B, Hu H, Mandal SK, Haddon RC (2005) A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 17(12):3235–3241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng Hwa Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saleemi, M.A., Wong, E.H. (2022). Biomedical Applications and Biosafety Profile of Carbon Nanotubes-Based Composites. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_74

Download citation

Publish with us

Policies and ethics