Skip to main content

Physical Properties of Carbon Nanotubes

  • Reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Carbon nanotubes are remarkable objects that look set to revolutionize the technology world. The fascinating properties of CNTs including physical, optical, and electrical properties made them one of the promising materials for the future research. This chapter mainly focuses on the physical properties of CNTs and provides an overview of factors affecting physical properties such as structural difference, purity, tube diameter, and density. Also, an attempt is made in this chapter to correlate and analyze both theoretical and experimental results with respect to Young’s modulus (E), shear modulus (G), bulk modulus (K), and Poisson’s ratio from the existing literature dealing with the physical and mechanical properties of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Chang TC (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58:1422–1433

    Article  CAS  Google Scholar 

  • Dai H (2002a) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  • Dai HL (2002b) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    Article  CAS  Google Scholar 

  • Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–28

    Article  CAS  Google Scholar 

  • Despres J, Daguerre E, Lafdi K (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104(5):2089–2092

    Article  Google Scholar 

  • Despres JF, Daguerre E, Lafdi K (1998) Radial compression and controlled cutting of carbon nanotubes. J Chem Phys 109(6):2509. https://doi.org/10.1063/1.476822

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Graphite fibers and filaments. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Falvo MR, Clary GJ, Taylor RM II, Chi V, Brooks FP Jr, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582

    Article  CAS  Google Scholar 

  • Ghavamian A, Rahmandoust M, Öchsner A (2013) On the determination of the shear modulus of carbon nanotubes. Compos Part B 44:52–59

    Article  CAS  Google Scholar 

  • Gupta SS, Batra RC (2008) Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput Mater Sci 43:715–723

    Article  CAS  Google Scholar 

  • Hall AR, An L, Liu J, Vicci L, Falvo MR, Superfine R, Washburn S (2006) Experimental measurement of single-wall carbon nanotube torsional properties. Phys Rev Lett. 96:25

    Article  Google Scholar 

  • Harris B, Bunsell AR (1977) Structure and properties of engineering materials the Aeronautical Journal. Longman, London/New York

    Google Scholar 

  • Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V (2009) Carbon nanotubes and its applications: a review. Asian J Pharmaceut Clin Res 2(4):17–27

    CAS  Google Scholar 

  • Hou W, Xiao S (2007) Mechanical behaviors of carbon nanotubes with randomly located vacancy defects. J Nanosci Nanotechnol 7:4478–4485

    Article  CAS  Google Scholar 

  • Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon Nanotubes. J Chem Phys 104:2089

    Article  CAS  Google Scholar 

  • Jean-Paul Salvetat G, Briggs AD, Bonard J-M, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Article  Google Scholar 

  • Jin Y, Yuan FG (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos Sci Technol 63:1507–1515

    Article  CAS  Google Scholar 

  • Kalamkarov AL, Georgiades AV, Rokkam SK, Veedu VP, Ghasemi-Nejhad MN (2006) Analytical and numerical techniques to predict carbon nanotubes properties. Int J Solids Struct 43:6832–6854

    Article  Google Scholar 

  • Kallesøe C, Larsen MB, Bøggild P, Mølhave K (2012) 3D mechanical measurements with an atomic force microscope on 1D structures. Rev Sci Instrum 83:023704

    Article  Google Scholar 

  • Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013

    Article  CAS  Google Scholar 

  • Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN and C nanoshell elasticity from ab initio computations. Phys Rev B.64:235406

    Article  Google Scholar 

  • Lauginie P, Conard J (1997) New growing modes for carbon: Modelization of lattice defects, structure of tubules and onions. J Phys Chem Solids 58:1949

    Article  CAS  Google Scholar 

  • Lourie O, Cox DM, Wagner HD (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett 81:1638

    Article  CAS  Google Scholar 

  • Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:25

    Article  Google Scholar 

  • Mielke SL, Troya D, Zhang S, Li J-L, Xiao S, Car R, Ruoff RS, Schatz GC, Belytschko T (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420

    Article  CAS  Google Scholar 

  • Motevalli B, Montazeri A, Tavakoli-Darestani R, Rafii-Tabar H (2012) Modeling the buckling behavior of carbon nanotubes under simultaneous combination of compressive and torsional loads. Phys E Low-Dimens Syst Nanostruct 46:139–148

    Article  CAS  Google Scholar 

  • Nardelli MB, Yakobson BI, Bernholc J (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev B 57:R4277

    Google Scholar 

  • Osmani RM, Kulkarni AS, Aloorkar NH, Bhosale RR, Ghodake PP, Harkare BR (2014) Carbon nanotubes: an impending carter in therapeutics. Int J Pharmaceut Clin Res 6(1):84–96

    Google Scholar 

  • Pereira AFG, Antunes JM, Fernandes JV et al (2016) Shear modulus and Poisson’s ratio of single-walled carbon nanotubes: numerical evaluation. Phys Status Solidi 253:366–376

    Article  CAS  Google Scholar 

  • Rafiee R, Moghadam RM (2014) On the modelling of carbon nanotubes: a critical review. Compos B Eng 56:435–449

    Article  CAS  Google Scholar 

  • Sakharova NA, Antunes JM, Pereira AFG, Fernandes JV (2017) Developments in the evaluation of elastic properties of carbon nanotubes and their hetero junctions by numerical simulation AIMS Materials. Science 4(3):706–737

    CAS  Google Scholar 

  • Salvetat J-P, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260

    Article  CAS  Google Scholar 

  • Smalley R, Hackerman N (2004) Interview with Tom Bearden. PBS, October 20. Accessed on March 23.

    Google Scholar 

  • Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678

    Article  CAS  Google Scholar 

  • Wang L, Zhang Z, Han X (2013) In situ experimental mechanics of nanomaterials at the atomic scale. NPG Asia Mater 5:2

    Article  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971

    Article  CAS  Google Scholar 

  • Wu Y, Zhang X, Leung AYT et al (2006) An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes. Thin-Walled Struct 44:667–676

    Article  Google Scholar 

  • Yakobson BI (1998) Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl Phys Lett 72:918

    Article  CAS  Google Scholar 

  • Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  CAS  Google Scholar 

  • Yu MF, Files BS, Arepalli S, Ruoff RS (2000a) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5554

    Article  CAS  Google Scholar 

  • Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000b) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titto Varughese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sivaganga, K.C., Varughese, T. (2022). Physical Properties of Carbon Nanotubes. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_62

Download citation

Publish with us

Policies and ethics