Skip to main content

Chemistry and Physics of Carbon Nanotube Structures

  • Reference work entry
  • First Online:
Handbook of Carbon Nanotubes
  • 1427 Accesses

Abstract

Carbon nanotubes (CNTs) have been investigated widely from fundamental physics and chemistry to applicable systems since they show unique and outstanding properties such as high electrical conductivity and optical transparency. This chapter reviews the first-principles density-functional study that reveals formation, stability, reactivity, and electronic properties of defects and impurities in CNT. This chapter begins with discussion of the stabilities and the electronic properties of various defect configurations in CNT induced by substitutional doping. Then, it also discusses adsorption effects of various molecules including toxic and environmentally polluting molecules on energetics, electronic properties, and transport of CNT and the possibilities for detecting those molecules individually. Furthermore, the curvature effects of nanotubes are revealed by comparing CNT with graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amorim R, Fazzio A, Antonelli A, Novaes A, daSilva F (2007) Divacancies in Graphene and carbon nanotubes. Nano Lett 7:2459–2462

    Article  CAS  Google Scholar 

  • Berber S, Oshiyama A (2006) Reconstruction of mono-vacancies in carbon nanotubes: atomic relaxation vs. spin polarization. Physica B (Amsterdam) 376–377:272–275

    Article  Google Scholar 

  • Büttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215

    Article  Google Scholar 

  • Cao Q, Rogers J (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53

    Article  CAS  Google Scholar 

  • Ceperley DM, Alder BJ (1980) Ground state of the Electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  • Chelikowsky JR, Troullier N, Saad Y (1994) Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys Rev Lett 72:1240

    Article  CAS  Google Scholar 

  • Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  CAS  Google Scholar 

  • Czerw R, Terrones M, Charlier JC, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Ruhle M, Ruhler M, Carroll DL (2001) Identification of Electron donor states in N-doped carbon nanotubes. Nano Lett 1:457–460

    Article  CAS  Google Scholar 

  • De Volder MLF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  • Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39

    Article  Google Scholar 

  • Fujimoto Y, Hirose K (2003a) First-principles treatments of electron transport properties for nanoscale junctions. Phys Rev B 67:195315

    Article  Google Scholar 

  • Fujimoto Y, Hirose K (2003b) First-principles calculation method of electron-transport properties of metallic nanowires. Nanotechnology 14:147–151

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2011a) Energetics and electronic structures of pyridine-type defects in nitrogen-doped carbon nanotubes. Phys E 43:677–680

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2011b) Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes. J Phys: Conf Ser 302:012006_1–012006_4

    Google Scholar 

  • Fujimoto Y, Saito S (2011c) Formation, stabilities, and electronic properties of nitrogen defects in graphene. Phys Rev B 84:245446

    Article  Google Scholar 

  • Fujimoto Y, Saito S (2014) Hydrogen adsorption and anomalous electronic properties of nitrogen-doped graphene. J Appl Phys 115:153701

    Article  Google Scholar 

  • Fujimoto Y, Saito S (2015a) Atomic geometries and electronic structures of hexagonal boron-nitride bilayers under strain. J Ceram Soc Jpn 123:576–578

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2015b) Electronic structures and stabilities of bilayer graphene doped with boron and nitrogen. Surf Sci 634:57–61

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2016a) Effects of strain on carbon donors and acceptors in hexagonal boron nitride monolayers. Phys Rev B 93:045402

    Article  Google Scholar 

  • Fujimoto Y, Saito S (2016b) Band engineering and relative stabilities of hexagonal boron nitride bilayers under biaxial strain. Phys Rev B 94:245427

    Article  Google Scholar 

  • Fujimoto Y, Saito S (2016c) Interlayer distances and band-gap tuning of hexagonal boron-nitride bilayers. J Ceram Soc Jpn 124:584–586

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2016d) Gas adsorption, energetics and electronic properties of boron- and nitrogen-doped bilayer graphenes. Chem Phys 478:55–61

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2017) Energetics and scanning tunneling microscopy images of B and N defects in graphene bilayer. Springer Proc Phys 186:107–112

    Article  CAS  Google Scholar 

  • Fujimoto Y, Saito S (2019) Effects of gas adsorption on the stabilities, electronic structures, and scanning tunneling microscopy of graphene monolayers doped with B or N. Jpn J Appl Phys 58:015005

    Article  Google Scholar 

  • Fujimoto Y, Saito S (2020) Stacking and curvature-dependent behaviors of electronic transport and molecular adsorptions of graphene: a comparative study of bilayer graphene and carbon nanotube. Appl Surf Sci Adv 1:100028

    Article  Google Scholar 

  • Fujimoto Y, Okada H, Endo K, Ono T, Tsukamoto S, Hirose K (2001) Images of scanning Tunneling microscopy on the Si(001)-p(2 × 2) reconstructed surface. Mater Trans 42:2247–2252

    Article  CAS  Google Scholar 

  • Fujimoto Y, Okada H, Inagaki K, Goto H, Endo K, Hirose K (2003) Theoretical study on the scanning Tunneling microscopy image of cl-adsorbed Si(001). Jpn J Appl Phys 42:5267

    Article  CAS  Google Scholar 

  • Fujimoto Y, Asari Y, Kondo H, Nara J, Ohno T (2005a) First-principles study of transport properties of Al wires: comparison between crystalline and jellium electrodes. Phys Rev B 72:113407

    Article  Google Scholar 

  • Fujimoto Y, Hirose K, Ohno T (2005b) Calculations of surface electronic structures by the overbridging boundary-matching method. Surf Sci 586:74–82

    Article  CAS  Google Scholar 

  • Fujimoto Y, Koretsune T, Saito S (2014) Electronic structures of hexagonal boron-nitride monolayer: strain-induced effects. J Ceram Soc Jpn 122:346–348

    Article  Google Scholar 

  • Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579

    Article  CAS  Google Scholar 

  • Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Direct evidence for atomic defects in graphene layers. Nature (London) 430:870–873

    Article  CAS  Google Scholar 

  • Hirose K, Ono T, Fujimoto Y, Tsukamoto S (2005) First-principles calculations in real-space formalism, electronic configurations and transport properties of nanostructures. Imperial College Press, London

    Book  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomogeneous Electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  • Kong J, Franklin N, Zhou C, Chapline M, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  • Ma Y, Lehtinen PO, Foster AS, Nieminen RM (2004) Magnetic properties of vacancies in graphene and single-walled carbon nanotubes. New J Phys 6:68–15

    Article  Google Scholar 

  • Min YS, Bae EJ, Kim UJ, Lee EH, Park N, Hwang CS, Park W (2008) Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes. Appl Phys Lett 93:043113_1–043113_3

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Okada H, Fujimoto Y, Endo K, Hirose K, Mori Y (2001) Detailed analysis of scanning tunneling microscopy images of the Si(001) reconstructed surface with buckled dimmers. Phys Rev B 63:195324

    Article  Google Scholar 

  • Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    Article  CAS  Google Scholar 

  • Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  • Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  CAS  Google Scholar 

  • Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530

    Article  CAS  Google Scholar 

  • Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805–813

    Article  CAS  Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  • Tsukamoto S, Ono T, Fujimoto Y, Inagaki K, Goto H, Hirose K (2001) Geometry and conduction of an infinite single-row gold wire. Mater Trans 42:2257–2260

    Article  CAS  Google Scholar 

  • Yamauchi J, Tsukada M, Watanabe S, Sugino O (1996) First-principles study on energetics of c-BN(001) reconstructed surfaces. Phys Rev B 54:5586–5603

    Article  CAS  Google Scholar 

  • Zhao L, Levendorf M, Goncher S, Schiros T, Pálová L, Zabet-Khosousi A, Rim KT, Gutiėrrez C, Nordlund D, Jaye C, Hybertsen M, Reichman D, Flynn GW, Park J, Pasupathy AN (2013) Local atomic and electronic structure of boron chemical doping in monolayer graphene. Nano Lett 13:4659–4665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy (Grant Number JPMXP0112101001), JSPS KAKENHI Grant Numbers JP17K05053 and JP21K04876. Computations were partly done at Institute for Solid State Physics, the University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fujimoto, Y. (2022). Chemistry and Physics of Carbon Nanotube Structures. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_54

Download citation

Publish with us

Policies and ethics