Skip to main content

Comparison of Different Maximum Power Point Tracking Algorithms

  • Conference paper
  • First Online:
Advanced Technologies, Systems, and Applications VI (IAT 2021)

Abstract

Use of renewable energy sources is constantly increasing throughout the world. Considerable attention is dedicated to solar energy systems which are interesting due to possibility of direct conversion of solar energy to electrical energy with use of solar cells. However, it is also becoming increasingly important to improve the efficiency of the systems during design stages. This paper presents comparison, simulation, and analysis of standalone photo-voltaic systems in terms of different maximum power point algorithms. First, various algorithms are proposed, and their advantages and disadvantages are investigated. Furthermore, a simulation model is developed that can work as generalized model of many commercially made PV modules. All proposed maximum power point (MPPV) algorithms are implemented and simulated. Finally, comparison of the results based on predetermined criteria is given along with a conclusion drawn from the presented results. This paper presents further contributions in this field as it presents evidence on importance of MPPV algorithms, their quantitative comparison and practical design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hlaili, M., Hfaiedh, M.: Comparison of different mppt algorithms with a proposed one using a power estimator for grid connected PV systems. Int. J. Photoenergy 2016, 1–10 (2016). https://doi.org/10.1155/2016/1728398

    Article  Google Scholar 

  2. Wai, R.-J., Wang, W.-H., Lin, C.-Y.: High-performance stand-alone photovoltaic generation system. Ind. Electron. IEEE Trans. 55, 240–250 (2008). https://doi.org/10.1109/TIE.2007.896049

    Article  Google Scholar 

  3. Sanz Morales, D.: Maximum Power Point Tracking Algorithms for Photovoltaic Applications, Thesis submitted for examination for the degree of Master of Science in Technology. Faculty of Electronics, Communications and Automation, Aalto University, 2010, Espoo 14.12.2010 (2010)

    Google Scholar 

  4. Leban, K., Ritchie, E.: Selecting the Accurate Solar Panel Simulation Model. In: Proceedings of the Nordic Workshop on Power and Industrial Electronics (NORPIE/2008). Aalborg University, Pontoppidanstræde 101, Aalborg, Denmark (2008)

    Google Scholar 

  5. Sera, D., Teodoresc, R., Rodriguez, P.: PV panel model based on datasheet values. In: Industrial Electronics, June 2007. ISIE 2007 (2007)

    Google Scholar 

  6. Elshatter, T.F., Elhagry, M.T., Abou-Elzahab, E.M., Elkousy, A.A.T.: Fuzzy modeling of photovoltaic panel equivalent circuit. In: Proceedings of the Conf. Record 28th IEEE Photovoltaic Spec. Conf., pp. 1656–1659 (2000)

    Google Scholar 

  7. Balzani, M., Reatti, A.: Neural network-based model of a PV array for the optimum performance of PV system. In: Proceedings of the Ph.D. Res. Microelectron. Electron., vol. 2 (2005)

    Google Scholar 

  8. Ghute, K., Kale, V.: A simplified matlab based simulation of PV module with effect of temperature and irradiation. Int. J. Eng. Tech. Res. 2, 2014 (2014)

    Google Scholar 

  9. Tan, Y.T., Kirschen, D.S., Jenkins, N.: A model of PV generation suitable for stability analysis. IEEE Trans. Energy Convers. 19, 2004 (2004)

    Google Scholar 

  10. El-Ahmar, M.H., El-Sayed, A.-H.M., Hemeida, A.M.: Mathematical Modeling of Photovoltaic Module and Evalute The Effect of Varoius Paramenters on its Performance, Eighteenth International Middle East Power Systems Conference (MEPCON) (2016)

    Google Scholar 

  11. Wasfi, M.: Solar energy and photovoltaic systems. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Renewable Sustainable Energy (2011)

    Google Scholar 

  12. SMA Solar Technology AG – Energy That Changes: SMA product catalogue, 2020. Accessed 10 Nov 2020

    Google Scholar 

  13. Salas, V., Olías, E., Barrado, A., Lazaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol. Energy Mater. Sol. Cells 90, 1555–1578 (2006). https://doi.org/10.1016/j.solmat.2005.10.023

    Article  Google Scholar 

  14. Reisi, A.R., Moradi, M.H., Jamas, S.: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renewable Sustainable Energy Rev. 19 (2013)

    Google Scholar 

  15. Schoeman, J.J., Wyk, J.D.V.: A simplified maximal power controller for terrestrial photovoltaic panel arrays. In: IEEE Power Electronics Specialists Conference, pp. 361–367. Cambridge, MA, USA (1982). https://doi.org/10.1109/PESC.1982.7072429

  16. Masoum, M.A.S., Dehbonei, H., Fuchs, E.F.: Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking. IEEE Trans. Energy Convers. 17, 2002 (2002)

    Article  Google Scholar 

  17. Hart, G.W., Branz, H.M., Cox, C.H.: Experimental tests of openloop maximum-power-point tracking techniques. Solar Cells 13, 185–195 (1984)

    Article  Google Scholar 

  18. Noguchi, T., Togashi, S., Nakamoto, R.: Short-current pulse based adaptive maximum-power-point tracking for photovoltaic power generation system. In: Proceedings of the 2000 IEEE Int. Symp. Ind. Electron., pp. 157–162 (2000)

    Google Scholar 

  19. Brambilla, A., Gambarara, M., Garutti, A., Ronchi, F.: New approach to photovoltaic arrays maximum power point tracking. In: Proceedings of the 30th Annu. IEEE Power Electron. Spec. Conf. (1999)

    Google Scholar 

  20. Kim, T.Y., Ahn, H.G., Park, S.K., Lee, Y.K.: A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation. In: IEEE International Symposium on Industrial Electronics, vol. 2, pp.1011–1014 (2001). https://doi.org/10.1109/ISIE.2001.931613

  21. Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F.: Improved MPPT Algorithms for Rapidly Changing Environmental Conditions, pp. 1614–1619 (2006). 10.1109 EPEPEMC.2006.4778635

    Google Scholar 

  22. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005)

    Article  Google Scholar 

  23. Xiao, W., Dunford, W.G.: A modified adaptive hill climbing MPPT method for photovoltaic power systems. In: 35th Annual IEEE Power Electronics Specialists Conference, vol. 3, pp. 1957–1963 (2004). https://doi.org/10.1109/PESC.2004.1355417

  24. Jain, S., Agarwal, V.: Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. Electr. Power Appl. IET 1(5), 753–762 (2007)

    Article  Google Scholar 

  25. Eltamaly, A., Rezk, H.: A comprehensive comparison of different MPPT techniques for photovoltaic systems. Sol. Energy 112, 1–11 (2015). https://doi.org/10.1016/j.solener.2014.11.010

    Article  Google Scholar 

  26. Sholapur, S., Mohan, K., Narsimhegowda, T.: Boost converter topology for pv system with perturb and observe MPPT algorithm. IOSR J. Electr. Electron. Eng. 9, 50–56 (2014). https://doi.org/10.9790/1676-09425056

    Article  Google Scholar 

  27. Ch, S.B., Kumari, J., Kullayappa, T.: Design and analysis of open circuit voltage based maximum power point tracking for photovoltaic system. Int. J. Adv. Sci. Technol. 2, 51–60 (2011)

    Google Scholar 

  28. Kumari, J., Ch, S.B., Yugandhar, J.: Design and investigation of short circuit current based maximum power point tracking for photovoltaic system. Sci. Acad. Publisher Int. J. Res. Rev. Electr. Comput. Eng. 1, 2046–5149 (2011)

    Google Scholar 

  29. Robles, C., Taborda, J., Rodriguez, O.: Fuzzy logic based MPPT controller for a PV system. Energies. 10(12), 2036 (2017). https://doi.org/10.3390/en10122036

    Article  Google Scholar 

  30. Arpadzic, A., Saric, M., Hivziefendic, J., Avdakovic, S.: Power system efficiency improvement using solar PV systems. In: International Symposium on Industrial Electronics and Applications, INDEL 2020 – Proceedings (2020)

    Google Scholar 

  31. Bandic, L., Hivziefendic, J., Saric, M., Tesanovic, M.: Voltage regulation of PV system with MPPT and battery stor-age in microgrid. In: Proceedings of 2020 International Conference on Smart Systems and Technologies, SST 2020, pp. 161–166, 9264071 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Škamo, A., Šarić, M., Vuić, L. (2022). Comparison of Different Maximum Power Point Tracking Algorithms. In: Ademović, N., Mujčić, E., Akšamija, Z., Kevrić, J., Avdaković, S., Volić, I. (eds) Advanced Technologies, Systems, and Applications VI. IAT 2021. Lecture Notes in Networks and Systems, vol 316. Springer, Cham. https://doi.org/10.1007/978-3-030-90055-7_10

Download citation

Publish with us

Policies and ethics