Skip to main content

Tracking Trajectory Control of a Double Pendulum Gantry Crane Using ADRC Approach

  • Conference paper
  • First Online:
Advances in Automation and Robotics Research (LACAR 2021)

Abstract

In this article, an Active Disturbance Rejection Control (ADRC) scheme is tested on a double pendulum gantry crane system, with controllable tangent linearization, to solve the problem of trajectory tracking on the cart. A combination of feedback state controller with disturbance rejection is presented achieving the rest to rest path for the cart while regulating the inverted pendulums so that it remains near the equilibrium point in spite of perturbations. Simulations allowed to assess the proposed scheme with effective results in the presence of disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shiriaev, A.S., Freidovich, L.B., Robertsson, A., Johansson, R., Sandberg, A.: Virtual-holonomic-constraints-based design of stable oscillations of furuta pendulum: theory and experiments. IEEE Trans. Rob. 23(4), 827–832 (2007)

    Article  Google Scholar 

  2. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. dissertation, Massachussets Institute of Technology (2000)

    Google Scholar 

  3. Butler, H., Honderd, G., Van Amerongen, J.: Model reference adaptive control of a gantry crane scale model. IEEE Control Syst. Mag. 11(1), 57–62 (1991)

    Article  Google Scholar 

  4. Singhose, W., Towell, S.: Double-pendulum gantry crane dynamics and control. In: Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104), vol. 2, pp. 1205–1209 (1998)

    Google Scholar 

  5. Ordaz, P., Poznyak, A.: ‘KL’-gain adaptation for attractive ellipsoid method. IMA J. Math. Control. Inf. 32(3), 447–469 (2015)

    Article  MathSciNet  Google Scholar 

  6. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  7. Zhao, S., Gao, Z.: An active disturbance rejection based approach to vibration suppression in two-inertia systems. Asian J. Control 15(2), 350–362 (2013)

    Article  MathSciNet  Google Scholar 

  8. Zhang, H., Zhao, S., Gao, Z.: An active disturbance rejection control solution for the two-mass-spring benchmark problem. In: American Control Conference (ACC). American Automatic Control Council (AACC) 2016, pp. 1566–1571 (2016)

    Google Scholar 

  9. Sira-Ramirez, H., Luviano-Juárez, A., Ramírez-Neria, M., Zurita-Bustamante, E.W.: Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach. Butterworth-Heinemann (2017)

    Google Scholar 

  10. Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R., Luviano-Juárez, A.: On the linear control of underactuated nonlinear systems via tangent flatness and active disturbance rejection control: the case of the ball and beam system. J. Dyn. Syst. Meas. Contr. 138(10), 104501 (2016)

    Article  Google Scholar 

  11. Ramirez-Neria, M., Gao, Z., Sira-Ramirez, H., Garrido-Moctezuma, R., Luviano-Juarez, A.: Trajectory tracking for an inverted pendulum on a cart: an active disturbance rejection control approach. In: Annual American Control Conference (ACC) 2018, pp. 4881–4886. IEEE (2018)

    Google Scholar 

  12. Ramírez-Neria, M., Gao, Z., Sira-Ramirez, H., Garrido-Moctezuma, R., Luviano-Juarez, A.: On the tracking of fast trajectories of a 3DOF torsional plant: a flatness based ADRC approach. Asian J. Control 23(3), 1367–1379 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This article was partially supported by Universidad Iberoamericana Ciudad de México, DINVP, Prolongación Paseo de la Reforma 880, Colonia Lomas de Santa Fe, Álvaro Obregón, Ciudad de México 01219, and by Secretaría de Investigación y Posgrado - IPN under grant 20210259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ramírez-Neria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramirez-Juarez, R., Ramírez-Neria, M., Luviano-Juárez, A. (2022). Tracking Trajectory Control of a Double Pendulum Gantry Crane Using ADRC Approach. In: Moreno, H.A., Carrera, I.G., Ramírez-Mendoza, R.A., Baca, J., Banfield, I.A. (eds) Advances in Automation and Robotics Research. LACAR 2021. Lecture Notes in Networks and Systems, vol 347. Springer, Cham. https://doi.org/10.1007/978-3-030-90033-5_11

Download citation

Publish with us

Policies and ethics