Skip to main content

SmartIDS: A Comparative Study of Intelligent Intrusion Detection Systems for Internet of Things

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1 (FTC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 358))

Included in the following conference series:

Abstract

Traditional intrusion detection systems (IDSs) are not scalable and efficient in detecting intrusions in IoT systems; hence, protecting them against cyber-attacks. The need to secure the Internet of Things (IoT) platforms deployable at a large scale to build smart systems gave rise to a new class of intelligent and scalable IDSs. Intelligent IDSs, which employ machine-learning (ML) or deep learning (DL) methods, have shown promising results in detecting intrusions with high accuracy and better detection rates than traditional IDSs that suffer from scalability, low detection rates, and inefficiency issues. This paper presents a comparative analysis of a selected set of intelligent IDSs using the Microsoft Azure ML Studio (AML-S) platform and datasets containing malicious and benign IoT network traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laqtib, S., Yassini, K.E., Hasnaoui, M.L.: A deep learning methods for intrusion detection systems based machine learning in MANET. In: Proceedings of the 4th International Conference on Smart City Applications. Association for Computing Machinery, pp. 1–8. New York, NY, USA (2019). https://doi.org/10.1145/3368756.3369021

  2. Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., Wahab, A.: A review of intrusion detection systems using machine and deep learning in internet of things: challenges. Solut. Future Direct. Electr. Basel 9, 1177 (2020). https://doi.org/10.3390/electronics9071177

    Article  Google Scholar 

  3. Chattopadhyay, M., Sen, R., Gupta, S.: A comprehensive review and meta-analysis on applications of machine learning techniques in intrusion detection. AJIS Australasian J. Inf. Syst. (2018). https://doi.org/10.3127/ajis.v22i0.1667

    Article  Google Scholar 

  4. Kelem, B.: Comparison of machine learning techniques for intrusion detection system (2018). https://doi.org/10.20372/nadre/6054

  5. Nie, L., Ning, Z., Wang, X., Hu, X., Li, Y., Cheng, J.: Data-driven intrusion detection for intelligent internet of vehicles: a deep convolutional neural network-based method. IEEE Trans. Netw. Sci. Eng, 1–1 (2020). https://doi.org/10.1109/TNSE.2020.2990984

  6. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation and analysis of using machine learning techniques for intrusion detection. IEEE Commun. Surv. Tutorials 21, 686–728 (2019). https://doi.org/10.1109/COMST.2018.2847722

    Article  Google Scholar 

  7. Horwitz, L.: Connected devices push business to the edge edge computing architecture, that is. In: Cisco (2018). https://www.cisco.com

  8. Goasduff, L.: Gartner says 5.8 billion enterprise and automotive IoT end-points will be in use in 2020. In: Gartner (2019). https://www.gartner.com

  9. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Futur. Gener. Comput. Syst. 100, 779–796 (2019). https://doi.org/10.1016/j.future.2019.05.041

    Article  Google Scholar 

  10. Lu, P.: ML Studio (classic): machine learning modules-azure. In: Microsoft (2019). https://docs.microsoft.com

  11. Hamid, Y., Sugumaran, M., Journaux, L.: Machine learning techniques for intrusion detection: a comparative analysis. In: Proceedings of the International Conference on Informatics and Analytics. Association for Computing Machinery, pp. 1–6. New York, NY, USA (2016). https://doi.org/10.1145/2980258.2980378

  12. Verma, A., Ranga, V.: Machine learning based intrusion detection systems for IoT applications. Wireless Pers. Commun. 111(4), 2287–2310 (2019). https://doi.org/10.1007/s11277-019-06986-8

    Article  Google Scholar 

  13. Belouch, M., El Hadaj, S., Idhammad, M.: Performance evaluation of intrusion detection based on machine learning using Apache Spark. Proc. Comput. Sci. 127, 1–6 (2018).https://doi.org/10.1016/j.procs.2018.01.091

  14. Magán-Carrión, R., Urda, D., Díaz-Cano, I., Dorronsoro, B.: Towards a reli-able comparison and evaluation of network intrusion detection systems based on machine learning approaches. Appl. Sci. 10, 1775 (2020). https://doi.org/10.3390/app10051775

    Article  Google Scholar 

  15. Amouri, A., Alaparthy, V.T., Morgera, S.D.: A machine learning based intrusion detection system for mobile Internet of Things. Sensors 20, 461 (2020). https://doi.org/10.3390/s20020461

    Article  Google Scholar 

  16. Vimala, S., Khanaa, V., Nalini, C.: A study on supervised machine learning algorithm to improvise intrusion detection systems for mobile ad hoc networks. Clust. Comput. 22(2), 4065–4074 (2018). https://doi.org/10.1007/s10586-018-2686-x

    Article  Google Scholar 

  17. Yang, K., Ren, J., Zhu, Y., Zhang, W.: Active learning for wireless IoT intrusion detection. IEEE Wirel. Commun. 25, 19–25 (2018). https://doi.org/10.1109/mwc.2017.1800079

    Article  Google Scholar 

  18. Shelkay, J.: Anomaly detection: IoT measurements. In: Azure AI Gallery (2019). https://gallery.azure.ai

  19. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical intrusion detection for vehicles using deep learning. IEEE Access. 6, 3491–3508 (2018). https://doi.org/10.1109/access.2017.2782159

  20. Dadras, S., Dadras, S., Winstead, C.: Identification of the attacker in cyber-physical systems with an application to vehicular platooning in adversarial environment. AACC, pp. 5560–5567 (2018).https://doi.org/10.23919/ACC.2018.8431648

  21. He, Q., Meng, X., Qu, R., Xi, R.: Machine learning-based detection for cybersecurity attacks on connected and autonomous vehicles. Mathemat. Basel 8, 1311 (2020). https://doi.org/10.3390/math8081311

    Article  Google Scholar 

  22. Alsarhan, A., Al-Ghuwairi, A.-R., Almalkawi, I.T., Alauthman, M., Al-Dubai, A.: Machine learning-driven optimization for intrusion detection in smart vehicular networks. Wireless Pers. Commun. 117(4), 3129–3152 (2020). https://doi.org/10.1007/s11277-020-07797-y

    Article  Google Scholar 

  23. Jankowski, D., Amanowicz, M.: On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. Int. J. Electron. Telecommun. 62, 247–252 (2016). https://doi.org/10.1515/eletel-2016-0033

    Article  Google Scholar 

  24. An, X., Zhou, X., L ̈u, X., Lin, F., Yang, L.: Sample selected extreme learning machine based intrusion detection in fog computing and MEC. Wireless Commun. Mobile Comput, 1–10 (2018). https://doi.org/10.1155/2018/7472095

  25. Muralidhar, N., illiad: InteLLigent invariant and anomaly detection in cyber-physical systems. ACM Trans. Intell. Syst. Technol. (TIST). 9, 1–20. https://doi.org/10.1145/3066167

  26. Valero Le ́on A INsIDES: A new machine learning-based intrusion detection system. http://hdl.handle.net

  27. Kumar, G., Thakur, K., Ayyagari, M.R.: MLEsIDSs: machine learning-based ensembles for intrusion detection systems a review. J. Supercomput. 76(11), 8938–8971 (2020). https://doi.org/10.1007/s11227-020-03196-z

    Article  Google Scholar 

  28. Sarker, I., Abushark, Y., Alsolami, F., Khan, A.: IntruDTree: a machine learning based cyber security intrusion detection model. Symmet. Basel 12, 754 (2020). https://doi.org/10.3390/sym12050754

    Article  Google Scholar 

  29. Nagaraja, A., Aljawarneh, S., Prabhakara, H.: PAREEKSHA: a machine learning approach for intrusion and anomaly detection. In: Proceedings of the First International Conference on Data Science, E-learning and Information Systems. Association for Computing Machinery, pp. 1–6. New York, NY, USA (2018). https://doi.org/10.1145/3279996.3280032.

  30. Lu, P., Gilley, S., Adusumilli, K., Martens, J.: What is azure machine learning studio? In: Microsoft (2020). https://docs.microsoft.com

  31. Rasane, K., Bewoor, L., Meshram, V.: A comparative analysis of intrusion detection techniques: machine learning approach (2019). https://doi.org/10.2139/ssrn.3418748

  32. Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., Anwar, A.: TONIoT telemetry dataset: a new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 8, 165130–165150 (2020). https://doi.org/10.1109/ACCESS.2020.3022862

    Article  Google Scholar 

  33. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the devel-opment of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Futur. Gener. Comput. Syst. 100, 779–796 (2019). https://doi.org/10.1016/j.future.2019.05.041

    Article  Google Scholar 

  34. Moustafa, N.: The Bot-IoT dataset (2019). https://ieee-dataport.org

  35. Lu, P.: What is Azure Machine Learning (2019). https://docs.microsoft.com

  36. Minaee, S.: 20 Popular machine learning Metrics. part 1: classification and re-gression evaluation metrics. In: Towards Data Science (2009). https://towardsdatascience.com37

  37. Li, B.: Algorithm and module reference - Azure Machine Learning. In: Microsoft (2020). https://docs.microsoft.com

  38. Zhang, X.: ML Studio (classic): One-class support vector machine - azure. In:Microsoft. https://docs.microsoft.com

  39. Eskandari, M., Janjua, Z.H., Vecchio, M., Antonelli, F.: Passban IDS: an in-telligent anomaly-based intrusion detection system for IoT edge devices. IEEE Internet Things J. 7, 6882–6897 (2020). https://doi.org/10.1109/JIOT.2020.2970501

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported in part by US National Science Foundation under the grant number 1828811 and CNS/SaTC 2039583, and by the US Department of Homeland Security (DHS) under grant award number, 2017-ST-062–000003. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Abdelmoumin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdelmoumin, G., Rawat, D.B. (2022). SmartIDS: A Comparative Study of Intelligent Intrusion Detection Systems for Internet of Things. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1. FTC 2021. Lecture Notes in Networks and Systems, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-030-89906-6_28

Download citation

Publish with us

Policies and ethics