Skip to main content

Modified Pointwise Mutual Information-Based Feature Selection for Text Classification

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2 (FTC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 359))

Included in the following conference series:

Abstract

Feature selection in text classification is applied to reduce the dimensionality of the vector space model. As a result, computational costs are reduced during model training and the quality of text classification is improved by eliminating noisy features. In the present paper, a modified pointwise mutual information-based method for feature selection (mPMI-based feature selection) in text classification is examined. The proposed approach overcomes the perceived shortcomings of PMI feature selection measure. The results of the experiments conducted are summarized and analyzed in order to compare the proposed approach with other approaches for feature selection across different classifiers and datasets. The obtained results confirm that mPMI-based feature selection is comparable or leads to a significant improvement in the performance of text classification for a small number of selected features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  2. Kira, K. Rendell, L.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 129–134 (1992)

    Google Scholar 

  3. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57868-4_57

    Chapter  Google Scholar 

  4. Urbanowicz, R.J., Meeker, M., Cava, W., Olson, R.S., Moore, J.H.: Relief-based feature selection: Introduction and review. J. Biomed. Inform. 85, 189–203 (2018)

    Article  Google Scholar 

  5. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of the 14th International Conference on Machine Learning (ICML), pp. 412–420 (1997)

    Google Scholar 

  6. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1305 (2003)

    MATH  Google Scholar 

  7. Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. ACM SIGKDD Explor. Newsl. 6(1), 80–88 (2004)

    Article  Google Scholar 

  8. Fattah, M.A.: A novel statistical feature selection approach for text categorization. J. Inf. Process. Syst. 13(5), 1397–1409 (2017)

    MathSciNet  Google Scholar 

  9. Shang, W., Huang, H., Zhu, H., Lin, Y., Qu, Y., Wang, Z.: A novel feature selection algorithm for text categorization. Expert Syst. Appl. 33(1), 1–5 (2007)

    Article  Google Scholar 

  10. Mladenic, D., Grobelnik, M.: Feature selection for unbalanced class distribution and Naïve Bayes. In: Proceedings of the Sixteenth International Conference on Machine Learning (ICML), pp. 258–267 (1999)

    Google Scholar 

  11. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)

    Article  Google Scholar 

  12. Xu, Y., Jones, G., Li, J.T., Wang, B., Sun, C.M.: A study on mutual information-based feature selection for text categorization. J. Comput. Inf. Syst. 3(3), 1007–1012 (2007)

    Google Scholar 

  13. Schneider, K.-M.: Weighted average pointwise mutual information for feature selection in text categorization. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 252–263. Springer, Heidelberg (2005). https://doi.org/10.1007/11564126_27

    Chapter  Google Scholar 

  14. Kim, K., Zzang, S.Y.: Trigonometric comparison measure: a feature selection method for text categorization. Data Knowl. Eng. 119, 1–21 (2019)

    Article  Google Scholar 

  15. Wan, C., Wang, Y., Liu, Y., Ji, J., Feng, G.: Composite feature extraction and selection for text classification. IEEE Access 7, 35208–35219 (2019)

    Article  Google Scholar 

  16. Georgieva-Trifonova, T., Stefanova, M., Kalchev, S.: Customer feedback text analysis for online stores reviews in Bulgarian. IAENG Int. J. Comput. Sci. 45(4), 560–568 (2018)

    Google Scholar 

  17. Macnamara, J.: Media content analysis: Its uses; benefits and best practice methodology. Asia Pacific Public Relations J. 6(1), 1–34 (2005)

    Article  Google Scholar 

  18. Newman, D., Karimi, S., Cavedon, L.: External evaluation of topic models. In: Proceedings of the 14th Australasian Document Computing Symposium, pp. 11–18 (2009)

    Google Scholar 

  19. Aletras, N., Stevenson, M.: Evaluating topic coherence using distributional semantics. In: Proceedings of the 10th International Conference on Computational Semantics (2013)

    Google Scholar 

  20. Duy, J., Jiangz, J., Songy, D., Liao, L.: Topic modeling with document relative similarities. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 3469–3475 (2015)

    Google Scholar 

  21. Chen, G.-B., Kao, H.-Y.: Word co-occurrence augmented topic model in short text. Comput. Linguist> Chinese Lang. Process. 20(2), 45–64 (2015)

    Google Scholar 

  22. Naskar, D., Mokaddem, S., Rebollo, M., Onaindia, E.: Sentiment analysis in social networks through topic modeling. In: Language Resources and Evaluation Conference, pp. 46–53 (2016)

    Google Scholar 

  23. Wood, J., Tan, P., Wang, W., Arnold, C.: Source-LDA: enhancing probabilistic topic models using prior knowledge sources. In: Proceedings of the IEEE 33rd International Conference on Data Engineering (2017)

    Google Scholar 

  24. Ouertatani, A., Gasmi, G., Latiri, C.: Opinion polarity detection in Twitter data combining sequence mining and topic modeling. In: Proceedings of the International Conference of the CLEF Association, Labs Working Notes (2017)

    Google Scholar 

  25. Yuan, M., Durme, B.V., Boyd-Graber, J.: Multilingual anchoring: interactive topic modeling and alignment across languages. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, pp. 8667–8677 (2018)

    Google Scholar 

  26. Li, Q., Li, S., Hu, J., Zhang, S., Hu, J.: Tourism review sentiment classification using a bidirectional recurrent neural network with an attention mechanism and topic-enriched word vectors. Sustainability 10(9), 3313 (2018)

    Article  Google Scholar 

  27. Cardenas, R., Bello, K., Coronado, A., Villota, E.: Improving topic coherence using entity extraction denoising. Prague Bull. Math. Linguist. 110(1), 85–101 (2018)

    Article  Google Scholar 

  28. Luo, X., Yi, Y.: Topic-specific emotion mining model for online comments. Future Internet 11(3), 79 (2019)

    Article  Google Scholar 

  29. Georgieva-Trifonova, T., Stefanova, M., Kalchev, S.: Dataset for: Customer Feedback Text Analysis for Online Stores Reviews in Bulgarian. Harvard Dataverse, Bulgarian (2018). https://doi.org/10.7910/DVN/TXIK9P

  30. Lewis, D.D.: Reuters-21578 text Categorization test collection (1997). https://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

  31. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Springer US, Boston, MA (2002). https://doi.org/10.1007/978-1-4615-0907-3

    Book  Google Scholar 

  32. Nugumanova, A., Bessmertny, I., Pecina, P., Baiburin, E.: Semantic relations in text classification based on bag-of-words model. Softw. Syst. 2(114), 89–99 (2016). (in Russian)

    Article  Google Scholar 

  33. Cachopo, A.C.: Datasets for single-label text categorization (1997). https://ana.cachopo.org/datasets-for-single-label-text-categorization

  34. Nakov, P.: BulStem: design and evaluation of inflectional stemmer for Bulgarian. In: Proceedings of Workshop on Balkan Language Resources and Tools (2003)

    Google Scholar 

  35. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980). https://doi.org/10.1108/eb046814

    Article  Google Scholar 

  36. Lu, F., Bai, Q.: A refined weighted k-nearest neighbours algorithm for text categorization. In: Proceedings of International Conference on Intelligent Systems and Knowledge Engendering, pp. 326–330. IEEE (2010)

    Google Scholar 

  37. Mitchell, T.M.: Machine Learning. McGraw Hill, New York, NY (1996)

    MATH  Google Scholar 

  38. Candel, A., Parmar, V.: Deep Learning with H2O, H2O.ai, Inc. (2015)

    Google Scholar 

  39. Cohen, W.W.: Fast effective rule induction. In: Machine Learning Proceedings 1995, pp. 115–123. Elsevier (1995). https://doi.org/10.1016/B978-1-55860-377-6.50023-2

    Chapter  Google Scholar 

  40. Gaines, B.R., Compton, P.: Induction of ripple-down rules applied to modeling large databases. J. Intell. Inf. Syst. 5(3), 211–228 (1995)

    Article  Google Scholar 

  41. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp.144–151 (1998)

    Google Scholar 

  42. Georgieva-Trifonova, T.: Results from “Modified Pointwise Mutual Information-Based Feature Selection for Text Classification”. Harvard Dataverse, V3 (2021). https://doi.org/10.7910/DVN/JEI1HR

  43. Trifonov, T., Tsonkova, V.: Statistics in Economics and Management. Astarta, Plovdiv (2009). (in Bulgarian)

    Google Scholar 

  44. Trifonov, T.: Applied mathematics. Astarta, Plovdiv (2005). (in Bulgarian)

    Google Scholar 

  45. Trifonov, T.: Statistics. Faber, Veliko Tarnovo (2012). (in Bulgarian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetanka Georgieva-Trifonova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgieva-Trifonova, T. (2022). Modified Pointwise Mutual Information-Based Feature Selection for Text Classification. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2. FTC 2021. Lecture Notes in Networks and Systems, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-030-89880-9_26

Download citation

Publish with us

Policies and ethics