Skip to main content

Nanocellulose-Based Materials for Wastewater Treatment

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

There is a growing global concern that the amount of wastewater generated by human, agricultural, and industrial activities is increasing at a rate that is bound to exceed the rate of wastewater treatment by established macroscopic methods. Thus, there is an urgent need for methods using nanotechnology and nanomaterials that are abundant, easily replaceable, and relatively inexpensive. Nanocomposites comprising nanocellulose (spherical nanoparticles, nanocrystals, nanofibers, bacterial cellulose) have highly valued properties required to separate pollutants such as heavy metals, oils, microbes, dyes, and organics. These very desirable features of various nanocellulose-polymer nanocomposites are ascribed to the markedly increased surface area, high aspect ratio, general inertness of nanocelluloses, and high retention capacity of the nanocomposites. Despite the abovementioned remarkable potential of nanocellulose-polymer composites, a variety of challenges abound in the selection of the most suitable materials to combine with nanocellulose to yield the nanomaterials which will have a high propensity for several applications. This chapter will endeavor to capture the notable successes which have been achieved, thus far, in utilizing different types of nanocelluloses as nanofillers and base materials to develop composite materials for wastewater treatment. It also discusses the unique properties of nanocelluloses-based materials for wastewater treatment, how they are produced, and how these materials remove water pollutants such as microbes, heavy metals, dyes, and oils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brauns, E.: Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power. Desalination. 219, 312–323 (2008)

    Article  CAS  Google Scholar 

  2. Frank, P., Ottoboni, M.A.: The Dose Makes the Poison: a Plain-Language Guide to Toxicology. Wiley USA (2011)

    Google Scholar 

  3. Li, X., Liu, J., Wang, Y., Xu, H., Cao, Y., Deng, X.: Separation of oil from wastewater by coal adsorption-column flotation. Sep. Sci. Technol. 50, 583–591 (2015)

    Article  CAS  Google Scholar 

  4. Hao, J., Wang, Z., Xiao, C., Zhao, J., Chen, L.: In situ reduced graphene oxide-based polyurethane sponge hollow tube for continuous oil removal from water surface. Environ. Sci. Pollut. Res. 25, 4837–4845 (2018)

    Article  CAS  Google Scholar 

  5. Ouyang, E., Liu, Y., Ouyang, J., Wang, X.: Effects of different wastewater characteristics and treatment techniques on the bacterial community structure in three pharmaceutical wastewater treatment systems. Environ. Technol. 40, 329–341 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Crini, G., Lichtfouse, E., Wilson, L.D., Morin-Crini, N.: Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 17, 195–213 (2019)

    Article  CAS  Google Scholar 

  7. Amin, M.T., Alazba, A.A., Manzoor, U.: A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/825910

  8. Chen, W.H., Young, T.M.: NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environ. Sci. Technol. 42, 1072–1077 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Mondal, S.: Review on nanocellulose polymer nanocomposites. Polym.-Plast. Technol. Eng. 57, 1377–1391 (2018)

    Article  CAS  Google Scholar 

  10. Shak, K.P.Y., Pang, Y.L., Mah, S.K.: Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J. Nanotechnol. 9, 2479–2498 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eichhorn, S.J.: Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter. 7, 303–315 (2011)

    Article  CAS  Google Scholar 

  12. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A.: Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011)

    Article  CAS  Google Scholar 

  13. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 1–33 (2020)

    Article  CAS  Google Scholar 

  14. Payen, A.: Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes rendus. 7, 1052–1056 (1838)

    Google Scholar 

  15. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. Lee, H.V., Hamid, S.B.A., Zain, S.K.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 1–20 (2014)

    Google Scholar 

  17. Alonso-Lerma, B., Barandiaran, L., Ugarte, L., Larraza, I., Reifs, A., Olmos-Juste, R., Barruetabeña, N., Amenabar, I., Hillenbrand, R., Eceiza, A., Perez-Jimenez, R.: High performance crystalline nanocellulose using an ancestral endoglucanase. Commun. Mater. 1, 1–10 (2020)

    Article  Google Scholar 

  18. Cheng, M., Qin, Z., Hu, J., Liu, Q., Wei, T., Li, W., Ling, Y., Liu, B.: Facile and rapid one-step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohydr. Polym. 231, 115701 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Afrin, S., Karim, Z.: Isolation and surface modification of nanocellulose: necessity of enzymes over chemicals. ChemBioEng. Rev. 4, 289–303 (2017)

    Article  CAS  Google Scholar 

  20. Bejoy, T., Midhun, C.R., Athira, K.B., Rubiyah, M.H., Jithin, J., Audrey, M., Glenna, L.D., Clément, S.: Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625 (2018)

    Article  CAS  Google Scholar 

  21. Lam, E., Male, K.B., Chong, J.H., Leung, A.C., Luong, J.H.: Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30, 283–290 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. Peng, L., Pere, F.B., Mojca, B., Vanja, K., Kristiina, O., Aji, P.: Nanocellulose and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J. Hazard. Mater. 294, 177–185 (2015)

    Article  CAS  Google Scholar 

  23. Eslami, H., Tzoganakis, C., Mekonnen, T.H.: Surface graft polymerization of lactic acid from the surface of cellulose nanocrystals and applications in chloroprene rubber film composites. Cellulose. 27, 5267–5284 (2020)

    Article  CAS  Google Scholar 

  24. Tshikovhi, A., Mishra, S.B., Mishra, A.K.: Nanocellulose-based composites for the removal of contaminants from wastewater. Int. J. Biol. Macromol. 152, 616–632 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. Ranjbar, H.A., Nourany, M., Mollavali, M., Noormohammadi, F., Jafari, S.: Stimuli-responsive polyurethane bionanocomposites of poly (ethylene glycol)/poly (ε-caprolactone) and [poly (ε-caprolactone)-grafted-] cellulose nanocrystals. Polym. Adv. Technol. 32, 76–86 (2020)

    Google Scholar 

  26. Girouard, N.M., Xu, S., Schueneman, G.T., Shofner, M.L., Meredith, J.C.: Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl. Mater. Interfaces. 8, 1458–1467 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. Gwon, J.G., Cho, H.J., Chun, S.J., Lee, S., Wu, Q., Lee, S.Y.: Physiochemical, optical and mechanical properties of poly (lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Adv. 6, 9438–9445 (2016)

    Article  CAS  Google Scholar 

  28. Mariano, M., Dufresne, A.: Nanocellulose: common strategies for processing of nanocomposites. In: Nanocelluloses: Their Preparation, Properties, and Applications, American Chemical Society, 11, 203–225 (2017)

    Google Scholar 

  29. Isogai, A.: Emerging nanocellulose technologies: recent developments. Adv. Mater., 33, 2000630 (2020)

    Google Scholar 

  30. Indarti, E., Rohaizu, R., Wanrosli, W.D.: Silylation of TEMPO oxidized nanocellulose from oil palm empty fruit bunch by 3-aminopropyltriethoxysilane. Int. J. Biol. Macromol. 135, 106–112 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. Ganguly, K., Lim, K.T.: Nanocellulose-based polymer nanohybrids and nanocomposite applications. In: Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystems, Elsevier, 20, 485–504 (2020)

    Google Scholar 

  32. Sriplai, N., Sirima, P., Palaporn, D., Mongkolthanaruk, W., Eichhorn, S.J., Pinitsoontorn, S.: White magnetic paper based on a bacterial cellulose nanocomposite. J. Mater. Chem. C6, 11427–11435 (2018)

    Google Scholar 

  33. Chakrabarty, A., Teramoto, Y.: Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers. 10, 517 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  34. Wei, J., Yang, Z., Sun, Y., Wang, C., Fan, J., Kang, G., Zhang, R., Dong, X., Li, Y.: Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J. Mater. Sci. 54, 6709–6718 (2019)

    Article  CAS  Google Scholar 

  35. Šturcová, A., Davies, G.R., Eichhorn, S.J.: Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 6, 1055–1061 (2005)

    Article  PubMed  CAS  Google Scholar 

  36. Jayakumar, R., Prabaharan, M., Kumar, P.T., Nair, S.V., Furuike, T., Tamura, H.: Novel chitin and chitosan materials in wound dressing. In: Biomedical Engineering, Trends in Materials Science, 1–23 (2011)

    Google Scholar 

  37. Chang, Y.C., Chang, S.W., Chen, D.H.: Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co (II) ions. React. Funct. Polym. 66, 335–341 (2006)

    Article  CAS  Google Scholar 

  38. Luo, X., Liu, L., Wang, L., Liu, X., Cai, Y.: Facile synthesis and low concentration tylosin adsorption performance of chitosan/cellulose nanocomposite microspheres. Carbohydr. Polym. 206, 633–640 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Godiya, C.B., Cheng, X., Li, D., Chen, Z., Lu, X.: Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 364, 28–38 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Daham, J., Chulgu, K., Yohan, K., Seunho, J.: Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. Eur. Polym. J. 127, 109586 (2020)

    Article  CAS  Google Scholar 

  41. Sarmad, A.Q., Mehvish, A., Muhammad, J., Areej, R., Muhammad, B.: Chitosan-based hybrid materials as adsorbents for textile dyes-a review. Case Stud. Chem. Environ. Eng. 2, 100021 (2020)

    Article  Google Scholar 

  42. Yang, M., Hadi, P., Yin, X., Yu, J., Huang, X., Ma, H., Walker, H., Hsiao, B.S.: Antifouling nanocellulose membranes: how subtle adjustment of surface charge lead to self-cleaning property. J. Membr. Sci. 618, 118739 (2021)

    Article  CAS  Google Scholar 

  43. Wang, Z., Zhang, W., Yu, J., Zhang, L., Liu, L., Zhou, X., Huang, C., Fan, Y.: Preparation of nanocellulose/filter paper (NC/FP) composite membranes for high-performance filtration. Cellulose. 26, 1183–1194 (2019)

    Article  CAS  Google Scholar 

  44. Palacios Hinestroza, H., Urena-Saborio, H., Zurita, F., Guerrero de León, A.A., Sundaram, G., Sulbarán-Rangel, B.: Nanocellulose and polycaprolactone nanospun composite membranes and their potential for the removal of pollutants from water. Molecules. 25, 683 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  45. Kian, L.K., Saba, N., Jawaid, M., Sultan, M.T.H.: A review on processing techniques of bast fibres nanocellulose and its polylactic acid (PLA) nanocomposites. Int. J. Biol. Macromol. 121, 1314–1328 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Hokkanen, S., Bhatnagar, A., Repo, E., Lou, S., Sillanpää, M.: Calcium hydroxyapatite micro fibrillated cellulose composite as a potential adsorbent for the removal of Cr (VI) from aqueous solution. Chem. Eng. J. 283, 445–452 (2016)

    Article  CAS  Google Scholar 

  47. Sun, X., Yang, L., Li, Q., Zhao, J., Li, X., Wang, X., Liu, H.: Amino-functionalized magnetic cellulose nanocomposite as an adsorbent for removal of Cr(VI): synthesis and adsorption studies. Chem. Eng. J. 241, 175–183 (2014)

    Article  CAS  Google Scholar 

  48. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M.: Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino-modified nanostructured micro fibrillated cellulose. Cellulose. 21, 1471–1487 (2014)

    Article  CAS  Google Scholar 

  49. Niu, Y., Li, K., Ying, D., Wang, Y., Jia, J.: Novel recyclable adsorbent for the removal of copper (II) and lead (II) from aqueous solution. Bioresour. Technol. 229, 63–68 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. Anirudhan, T.S., Deepa, J.R., Christa, J.: Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of cobalt (II) from nuclear industry wastewater samples. J. Colloid Interface Sci. 467, 307–320 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. Anirudhan, T.S., Deepa, J.R.: Synthesis and characterization of multi-carboxyl-functionalized nanocellulose/nanobentonite composite for the adsorption of uranium (VI) from aqueous solutions: kinetic and equilibrium profiles. Chem. Eng. J. 273, 390–400 (2015)

    Article  CAS  Google Scholar 

  52. Jiao, C., Tao, J., Xiong, J., Wang, X., Zhang, D., Lin, H., Chen, Y.: In situ synthesis of MnO2− loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater. Cellulose. 24, 2591–2604 (2017)

    Article  CAS  Google Scholar 

  53. Dong, C., Zhang, F., Pang, Z., Yang, G.: Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent. Carbohydr. Polym. 151, 230–236 (2016)

    Article  CAS  PubMed  Google Scholar 

  54. Suopajärvi, T., Liimatainen, H., Karjalainen, M., Upola, H., Niinimäki, J.: Lead adsorption with sulfonated wheat pulp nanocelluloses. J. Water Process Eng. 5, 136–142 (2015)

    Article  Google Scholar 

  55. Sehaqui, H., Mautner, A., de Larraya, U.P., Pfenninger, N., Tingaut, P., Zimmermann, T.: Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr. Polym. 135, 334–340 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. Taleb, K., Markovski, J., Veličković, Z., Rusmirović, J., Rančić, M., Pavlović, V., Marinković, A.: Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size. Arab. J. Chem. 12, 4675–4693 (2019)

    Article  CAS  Google Scholar 

  57. Beyki, M.H., Bayat, M., Shemirani, F.: Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Bioresour. Technol. 218, 326–334 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. Jin, L., Li, W., Xu, Q., Sun, Q.: Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose. 22, 2443–2456 (2015)

    Article  CAS  Google Scholar 

  59. Mohammed, N., Grishkewich, N., Waeijen, H.A., Berry, R.M., Tam, K.C.: Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydr. Polym. 136, 1194–1202 (2016)

    Article  CAS  PubMed  Google Scholar 

  60. Prakash, N., Sudha, P.N., Renganathan, N.G.: Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environ. Sci. Pollut. Res. 19(7), 2930–2941 (2012)

    Article  CAS  Google Scholar 

  61. Maatar, W., Boufi, S.: Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes. Cellulose. 24, 1001–1015 (2017)

    Article  CAS  Google Scholar 

  62. Vilela, C., Moreirinha, C., Almeida, A., Silvestre, A.J., Freire, C.S.: Zwitterionic nanocellulose-based membranes for organic dye removal. Materials. 12, 1404 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  63. Chumee, J., Khemmakama, P.: Carboxymethyl cellulose from pineapple peel: useful green bioplastic. Adv. Mater. Res. 979, 366–369 (2014)

    Article  Google Scholar 

  64. Lichtfouse, E., Morin-Crini, N., Fourmentin, M., Zemmouri, H., do Carmo Nascimento, I.O., Queiroz, L.M., Tadza, M.Y.M., Picos-Corrales, L.A., Pei, H., Wilson, L.D., Crini, G.: Chitosan for direct bioflocculation of wastewater. Environ. Chem. Lett., 17, 1603–1621 (2019)

    Google Scholar 

  65. Dai, H., Huang, Y., Huang, H.: Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 185, 1–11 (2018)

    Article  PubMed  CAS  Google Scholar 

  66. Kasiri, M.B.: Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater. The Impact and Prospects of Green Chemistry for Textile Technology, Elsevier, 14, 417–469 (2019)

    Google Scholar 

  67. Phanthong, P., Reubroycharoen, P., Kongparakul, S., Samart, C., Wang, Z., Hao, X., Abudula, A., Guan, G.: Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr. Polym. 190, 184–189 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. Hassan, E., Hassan, M., Abou-zeid, R., Berglund, L., Oksman, K.: Use of bacterial cellulose and crosslinked cellulose nanofibers membranes for removal of oil from oil-in-water emulsions. Polymers. 9, 388 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  69. Choudhury, R.R., Sahoo, S.K., Gohil, J.M.: Potential of bioinspired cellulose nanomaterials and nanocomposite membranes thereof for water treatment and fuel cell applications. Cellulose. 27, 6719–6746 (2020)

    Article  CAS  Google Scholar 

  70. Sai, H., Fu, R., Xing, L., Xiang, J., Li, Z., Li, F., Zhang, T.: Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces. 7, 7373–7381 (2015)

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, S., Liu, P., Wang, M., Zhao, H., Yang, J., Xu, F.: Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustain. Chem. Eng. 4, 6409–6416 (2016)

    Article  CAS  Google Scholar 

  72. Lin, R., Li, A., Zheng, T., Lu, L., Cao, Y.: Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv. 5, 82027–82033 (2015)

    Article  CAS  Google Scholar 

  73. Meng, Y., Young, T.M., Liu, P., Contescu, C.I., Huang, B., Wang, S.: Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose. 22, 435–447 (2015)

    Article  CAS  Google Scholar 

  74. Feng, J., Nguyen, S.T., Fan, Z., Duong, H.M.: Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem. Eng. J. 270, 168–175 (2015)

    Article  CAS  Google Scholar 

  75. Korhonen, J.T., Kettunen, M., Ras, R.H., Ikkala, O.: Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces. 3, 1813–1816 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. Yang, X., Cranston, E.D.: Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016–6025 (2014)

    Article  CAS  Google Scholar 

  77. Ma, H., Wang, S., Meng, F., Xu, X., Huo, X.: A hydrazone-carboxyl ligand-linked cellulose nanocrystal aerogel with high elasticity and fast oil/water separation. Cellulose. 24, 797–809 (2017)

    Article  CAS  Google Scholar 

  78. Zheng, Q., Cai, Z., Gong, S.: Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A. 2, 3110–3118 (2014)

    Article  CAS  Google Scholar 

  79. Jiang, F., Hsieh, Y.L.: Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A. 2, 6337–6342 (2014)

    Article  CAS  Google Scholar 

  80. Zhang, Z., Sèbe, G., Rentsch, D., Zimmermann, T., Tingaut, P.: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26, 2659–2668 (2014)

    Article  CAS  Google Scholar 

  81. Suman, Kardam, A., Gera, M., Jain, V.K.: A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles. Environ. Technol. 36, 706–714 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Durban University of Technology (South Africa) and Hainan University (China) for supporting this work. This research was funded by the Natural Science Foundation of Hainan Province (2019RC166, 2019RC110 and 2019RC250) and National Natural Science Foundation of China (21965011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandasamy G. Moodley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moodley, K.G., Arumugam, V., Barhoum, A. (2022). Nanocellulose-Based Materials for Wastewater Treatment. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_48

Download citation

Publish with us

Policies and ethics