Skip to main content

Nanocelluloses for Tissue Engineering Application

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

The most ubiquitous polymer that exists in nature is cellulose which occupies a predominant position in tissue engineering (TE) technologies mainly due to its beneficial properties such as renewability, non-toxicity, and biocompatibility. Nanostructured cellulose with size not exceeding 100 nm at least in one dimension is referred to as nanocellulose. In TE applications, nanocellulose-based scaffolds have created immense interest owing to its salient characteristic features such as water absorption, water retention, optical transparency, chemo-mechanical properties, special surface chemistry, and biocompatibility. In this chapter, we first provide a brief outline about how nanotechnology principles have impacted TE process to develop functional biomaterials. Then we emphasize in summarizing the family of nanocellulose which includes cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial cellulose (BC) that are commonly employed in scaffold development for tissue-specific organ regeneration. A short overview of sources, methodology, physicochemical properties, and applications of different nanocellulose is discussed in depth. Additionally, we also discuss about the application of different nanocellulose-based hydrogels, three-dimensional (3D) scaffolds, and 3D printed constructs in a multitude of tissue engineering applications. Finally, the future challenges, opportunities, and potentials of nanocellulose are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wegner, T.H., Jones, P.E.: Advancing cellulose-based nanotechnology. Cellulose. 13(2), 115–118 (2006). https://doi.org/10.1007/s10570-006-9056-1

    Article  CAS  Google Scholar 

  2. He, X., Deng, H., Hwang, H.M.: The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 27(1), 1–21 (2019). https://doi.org/10.1016/j.jfda.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  3. French, A. D., Pérez, S., Bulone, V., Rosenau, T., Gray, D.: Cellulose. Encyclopedia of polymer science and technology. 1–69 (2002). https://doi.org/10.1002/0471440264.pst042.pub2

  4. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G.: Nanocellulose: extraction and application. Carbon Resour. Convers. 1(1), 32–43 (2018). https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  5. Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., Hussin, M.H.: Nanocellulose: from fundamentals to advanced applications. Front. Chem. 8, 392 (2020). https://doi.org/10.3389/fchem.2020.00392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, J., Liu, X., Jin, T., He, H., Liu, L.: Preparation of nanocellulose and its potential in reinforced composites: a review. J. Biomater. Sci. Polym. Ed. 30(11), 919–946 (2019). https://doi.org/10.1080/09205063.2019.1612726

    Article  CAS  PubMed  Google Scholar 

  7. Coelho, C.C., Michelin, M., Cerqueira, M.A., Gonçalves, C., Tonon, R.V., Pastrana, L.M., Freitas-Silva, O., Vicente, A.A., Cabral, L.M., Teixeira, J.A.: Cellulose nanocrystals from grape pomace: production, properties and cytotoxicity assessment. Carbohydr. Polym. 192, 327–336 (2018). https://doi.org/10.1016/j.carbpol.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  8. Ramos, T., Moroni, L.: Tissue engineering and regenerative medicine 2019: the role of biofabrication – a year in review. Tissue Eng. Part C Methods. 26(2), 91–106 (2020). https://doi.org/10.1089/ten.tec.2019.0344

    Article  PubMed  Google Scholar 

  9. Porada, C.D., Atala, A.J., Almeida-Porada, G.: The hematopoietic system in the context of regenerative medicine. Methods. 99, 44–61 (2015). https://doi.org/10.1016/j.ymeth.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pardeep, S., Santhosh, K., Krishna, K., Vivek, V., Rutvik, V., Paramvir Singh, D.: Recent advances in tissue engineering and regenerative medicine. Biomed. J. Sci. Tech. Res. 26(2), 19733–19739 (2016). https://doi.org/10.26717/BJSTR.2020.26.004312

    Article  Google Scholar 

  11. Dzobo, K., Thomford, N.E., Senthebane, D.A., Shipanga, H., Rowe, A., Dandara, C., Pillay, M., Motaung, K.S.C.M.: Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int., 2495848 (2018). https://doi.org/10.1155/2018/2495848

  12. O’brien, F.J.: Biomaterials & scaffolds for tissue engineering. Mater. Today. 14(3), 88–95 (2011). https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  13. Klimek, K., Ginalska, G.: Proteins and peptides as important modifiers of the polymer scaffolds for tissue engineering applications – a review. Polymers. 12, 844 (2020). https://doi.org/10.3390/polym12040844

    Article  CAS  PubMed Central  Google Scholar 

  14. Yamzon, J.L., Kokorowski, P., Koh, C.J.: Stem cells and tissue engineering applications of the genitourinary tract. Pediatr. Res. 63(5), 472–477 (2008). https://doi.org/10.1203/PDR.0b013e31816a704a

    Article  PubMed  Google Scholar 

  15. Howard, D., Buttery, L.D., Shakesheff, K.M., Roberts, S.J.: Tissue engineering: strategies, stem cells and scaffolds. J. Anat. 213(1), 66–72 (2008). https://doi.org/10.1111/j.1469-7580.2008.00878.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harley, B.A., Kim, H.D., Zaman, M.H., Yannas, I.V., Lauffenburger, D.A., Gibson, L.J.: Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys. J. 95(8), 4013–4024 (2008). https://doi.org/10.1529/biophysj.107.122598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atanasova, M., Whitty, A.: Understanding cytokine and growth factor receptor activation mechanisms. Crit. Rev. Biochem. Mol. 47(6), 502–530 (2012). https://doi.org/10.3109/10409238.2012.729561

    Article  CAS  Google Scholar 

  18. Mitchell, A.C., Briquez, P.S., Hubbell, J.A., Cochran, J.R.: Engineering growth factors for regenerative medicine applications. Acta Biomater. 30, 1–12 (2016). https://doi.org/10.1016/j.actbio.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  19. Salgado, A.J., Oliveira, J.M., Martins, A., Teixeira, F.G., Silva, N.A., Neves, N.M., Sousa, N., Reis, R.L.: Tissue engineering and regenerative medicine: past, present, and future. Int. Rev. Neurobiol. 108, 1–33 (2013). https://doi.org/10.1016/B978-0-12-410499-0.00001-0

    Article  CAS  PubMed  Google Scholar 

  20. Mano, J.F., Silva, G.A., Azevedo, H.S., Malafaya, P.B., Sousa, R.A., Silva, S.S., Boesel, L.F., Oliveira, J.M., Neves, N.M.: Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface. 4(17), 999–1030 (2007). https://doi.org/10.1098/rsif.2007.0220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salehi-Nik, N., Rad, M.R., Nazeman, P., Khojasteh, A.: Polymers for oral and dental tissue engineering. In: Biomaterials for Oral and Dental Tissue Engineering, pp. 25–46. Woodhead Publishing (2017). https://doi.org/10.1016/B978-0-08-100961-1.00003-7

    Chapter  Google Scholar 

  22. Brokesh, A.M., Gaharwar, A.K.: Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Inter. 12(5), 5319–5344 (2020). https://doi.org/10.1021/acsami.9b17801

    Article  CAS  Google Scholar 

  23. Rivero, R.E., Capella, V., Liaudat, A.C., Bosch, P., Barbero, C.A., Rodríguez, N., Rivarola, C.R.: Mechanical and physicochemical behavior of a 3D hydrogel scaffold during cell growth and proliferation. RSC Adv. 10(10), 5827–5837 (2020). https://doi.org/10.1039/C9RA08162C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pina, S., Ribeiro, V.P., Marques, C.F., Maia, F.R., Silva, T.H., Reis, R.L., Oliveira, J.M.: Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 12(11), 1824 (2019). https://doi.org/10.3390/ma12111824

    Article  CAS  PubMed Central  Google Scholar 

  25. Gomes, M.E., Rodrigues, M.T., Domingues, R.M., Reis, R.L.: Tissue engineering and regenerative medicine: new trends and directions – a year in review. Tissue Eng. Part B – Rev. 23(3), 211–224 (2017). https://doi.org/10.1089/ten.teb.2017.0081

    Article  PubMed  Google Scholar 

  26. Luo, H., Cha, R., Li, J., Hao, W., Zhang, Y., Zhou, F.: Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohydr. Polym. 224, 115144 (2019). https://doi.org/10.1016/j.carbpol.2019.115144

    Article  CAS  PubMed  Google Scholar 

  27. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  28. Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., Svorcik, V.: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials-Basel. 9(2), 164 (2019). https://doi.org/10.3390/nano9020164

    Article  CAS  PubMed Central  Google Scholar 

  29. Domingues, R.M., Gomes, M.E., Reis, R.L.: The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules. 15(7), 2327–2346 (2014). https://doi.org/10.1021/bm500524s

    Article  CAS  PubMed  Google Scholar 

  30. Cellulose nanocrystals: production, functionalization and advanced applications. Rev. Adv. Mater. Sci. 58(1), 1–16. https://doi.org/10.1515/rams-2019-0001

  31. George, J., Sabapathi, S.N.: Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015). https://doi.org/10.2147/NSA.S64386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B

    Article  CAS  PubMed  Google Scholar 

  33. Shan, Y., Li, C., Wu, Y., Li, Q., Liao, J.: Hybrid cellulose nanocrystal/alginate/gelatin scaffold with improved mechanical properties and guided wound healing. RSC Adv. 9(40), 22966–22979 (2019). https://doi.org/10.1039/c9ra04026a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, W., Sun, L., Zhang, Z., Li, Z.: Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. J. Biomater. Sci. Polym. Ed. 31(8), 984–998 (2020). https://doi.org/10.1080/09205063.2020.1735607

    Article  CAS  PubMed  Google Scholar 

  35. Eyley, S., Thielemans, W.: Surface modification of cellulose nanocrystals. Nanoscale. 6(14), 7764–7779 (2014). https://doi.org/10.1039/C4NR01756K

    Article  CAS  PubMed  Google Scholar 

  36. Halib, N., Perrone, F., Cemazar, M., Dapas, B., Farra, R., Abrami, M., Murena, L.: Potential applications of nanocellulose-containing materials in the biomedical field. Materials. 10(8), 977 (2017). https://doi.org/10.3390/ma10080977

    Article  CAS  PubMed Central  Google Scholar 

  37. Guo, R., Lan, Y., Xue, W., Cheng, B., Zhang, Y., Wang, C., Ramakrishna, S.: Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regener. Med. 11(12), 3544–3555 (2017). https://doi.org/10.1002/term.2272

    Article  CAS  Google Scholar 

  38. Yang, W., Zheng, Y., Chen, J., Zhu, Q., Feng, L., Lan, Y., Zhu, P., Tang, S., Guo, R.: Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. Mater. Sci. Eng. C. 99, 1362–1373 (2019). https://doi.org/10.1016/j.msec.2019.02.071

    Article  CAS  Google Scholar 

  39. Zhang, X.Y., Chen, Y.P., Han, J., Mo, J., Dong, P.F., Zhuo, Y.H., Feng, Y.: Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 136, 1247–1257 (2019). https://doi.org/10.1016/j.ijbiomac.2019.06.172

    Article  CAS  PubMed  Google Scholar 

  40. Osorio, D.A., Lee, B.E., Kwiecien, J.M., Wang, X., Shahid, I., Hurley, A.L., Cranston, E.D., Grandfield, K.: Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 87, 152–165 (2019). https://doi.org/10.1016/j.actbio.2019.01.049

    Article  CAS  PubMed  Google Scholar 

  41. Chau, M., De France, K.J., Kopera, B., Machado, V.R., Rosenfeldt, S., Reyes, L., Chan, K.J., Förster, S., Cranston, E.D., Hoare, T., Kumacheva, E.: Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem. Mater. 28(10), 3406–3415 (2016). https://doi.org/10.1021/acs.chemmater.6b00792

    Article  CAS  Google Scholar 

  42. Zhang, X., Wang, C., Liao, M., Dai, L., Tang, Y., Zhang, H., Coates, P., Sefat, F., Zheng, L., Song, J., Zheng, Z.: Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr. Polym. 213, 27–38 (2019). https://doi.org/10.1016/j.carbpol.2019.02.038

    Article  CAS  PubMed  Google Scholar 

  43. Xie, H., Du, H., Yang, X., Si, C.: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci., 7923068 (2018). https://doi.org/10.1155/2018/7923068

  44. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: a review of recent advances. Ind. Crop. Prod. 93, 2–25 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  45. Rol, F., Belgacem, M.N., Gandini, A., Bras, J.: Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 88, 241–264 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.002

    Article  CAS  Google Scholar 

  46. Pereira, M.M., Raposo, N.R.B., Brayner, R., Teixeira, E.M., Oliveira, V., Quintão, C.C.R., Camargo, L.S.A., Mattoso, L.H.C., Brandão, H.M.: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology. 24(7), 075103 (2013). https://doi.org/10.1088/0957-4484/24/7/075103

    Article  CAS  PubMed  Google Scholar 

  47. Kong, W., Wang, C., Jia, C., Kuang, Y., Pastel, G., Chen, C., Chen, G., He, S., Huang, H., Zhang, J., Wang, S.: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 30(39), 1801934 (2018). https://doi.org/10.1002/adma.201801934

    Article  CAS  Google Scholar 

  48. Basu, A., Heitz, K., Strømme, M., Welch, K., Ferraz, N.: Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications. Carbohydr. Polym. 181, 345–350 (2018). https://doi.org/10.1016/j.carbpol.2017.10.085

    Article  CAS  PubMed  Google Scholar 

  49. Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B., Li, Y.: A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 188, 27–36 (2018). https://doi.org/10.1016/j.carbpol.2018.01.093

    Article  CAS  PubMed  Google Scholar 

  50. Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., Li, B.: Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, H., Yang, C., Zhou, W., Luan, Q., Li, W., Deng, Q., Dong, X., Tang, H., Huang, F.: A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics. ACS Sustain. Chem. Eng. 6(11), 13924–13931 (2018). https://doi.org/10.1021/acssuschemeng.8b02237

    Article  CAS  Google Scholar 

  52. Foresti, M.L., Vázquez, A., Boury, B.: Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr. Polym. 157, 447–467 (2016). https://doi.org/10.1016/j.carbpol.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  53. Shah, N., Ul-Islam, M., Khattak, W.A., Park, J.K.: Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98(2), 1585–1598 (2013). https://doi.org/10.1016/j.carbpol.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  54. Petersen, N., Gatenholm, P.: Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl. Microbiol. Biotechnol. 91(5), 1277 (2011). https://doi.org/10.1007/s00253-011-3432-y

    Article  CAS  PubMed  Google Scholar 

  55. Rajwade, J.M., Paknikar, K.M., Kumbhar, J.V.: Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99(6), 2491–2511 (2015). https://doi.org/10.1007/s00253-015-6426-3

    Article  CAS  PubMed  Google Scholar 

  56. Hu, W., Chen, S., Yang, J., Li, Z., Wang, H.: Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 101, 1043–1060 (2014). https://doi.org/10.1016/j.carbpol.2013.09.102

    Article  CAS  PubMed  Google Scholar 

  57. Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., Gatenholm, P.: Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 6(7), 2540–2547 (2010). https://doi.org/10.1016/j.actbio.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  58. Li, J., Wan, Y., Li, L., Liang, H., Wang, J.: Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C. 29(5), 1635–1642 (2009). https://doi.org/10.1016/j.msec.2009.01.006

    Article  CAS  Google Scholar 

  59. Carvalho, T., Guedes, G., Sousa, F.L., Freire, C.S., Santos, H.A.: Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. Biotechnol. J. 14(12), 1900059 (2019). https://doi.org/10.1002/biot.201900059

    Article  CAS  Google Scholar 

  60. Vismara, E., Bernardi, A., Bongio, C., Farè, S., Pappalardo, S., Serafini, A., Pollegioni, L., Rosini, E., Torri, G.: Bacterial nanocellulose and its surface modification by glycidyl methacrylate and ethylene glycol dimethacrylate. Incorporation of vancomycin and ciprofloxacin. Nano. 9(12), 1668 (2019). https://doi.org/10.3390/nano9121668

    Article  CAS  Google Scholar 

  61. Bottan, S., Robotti, F., Jayathissa, P., Hegglin, A., Bahamonde, N., Heredia-Guerrero, J.A., Bayer, I.S., Scarpellini, A., Merker, H., Lindenblatt, N., Poulikakos, D.: Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano. 9(1), 206–219 (2015). https://doi.org/10.1021/NN5036125

    Article  CAS  PubMed  Google Scholar 

  62. Wu, C.N., Fuh, S.C., Lin, S.P., Lin, Y.Y., Chen, H.Y., Liu, J.M., Cheng, K.C.: TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules. 19(2), 544–554 (2018). https://doi.org/10.1021/acs.biomac.7b01660

    Article  CAS  PubMed  Google Scholar 

  63. Portela, R., Leal, C.R., Almeida, P.L., Sobral, R.G.: Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb. Biotechnol. 12(4), 586–610 (2019). https://doi.org/10.1111/1751-7915.13392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y., Yuan, X., Yu, K., Meng, H., Zheng, Y., Peng, J., Lu, S., Liu, X., Xie, Y., Qiao, K.: Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials. 171, 118–132 (2018). https://doi.org/10.1016/j.biomaterials.2018.04.033

    Article  CAS  PubMed  Google Scholar 

  65. Favi, P.M., Ospina, S.P., Kachole, M., Gao, M., Atehortua, L., Webster, T.J.: Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose. 23(2), 1263–1282 (2016). https://doi.org/10.1007/s10570-016-0867-4

    Article  CAS  Google Scholar 

  66. Cacicedo, M.L., Islan, G.A., Drachemberg, M.F., Alvarez, V.A., Bartel, L.C., Bolzán, A.D., Castro, G.R.: Hybrid bacterial cellulose–pectin films for delivery of bioactive molecules. New J. Chem. 42(9), 7457–7467 (2018). https://doi.org/10.1039/C7NJ03973E

    Article  CAS  Google Scholar 

  67. Chen, C., Chen, X., Zhang, H., Zhang, Q., Wang, L., Li, C., Dai, B., Yang, J., Liu, J., Sun, D.: Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture. Acta Biomater. 55, 434–442 (2017). https://doi.org/10.1016/j.actbio.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, J., Marchant, R.E.: Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devic. 8(5), 607–626 (2011). https://doi.org/10.1586/erd.11.27

    Article  CAS  Google Scholar 

  69. Shen, X., Shamshina, J.L., Berton, P., Gurau, G., Rogers, R.D.: Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem. 18(1), 53–75 (2016). https://doi.org/10.1039/C5GC02396C

    Article  Google Scholar 

  70. Murizan, N.I.S., Mustafa, N.S., Ngadiman, N.H.A., Mohd Yusof, N., Idris, A.: Review on nanocrystalline cellulose in bone tissue engineering applications. Polymers. 12(12), 2818 (2020). https://doi.org/10.3390/polym12122818

    Article  CAS  PubMed Central  Google Scholar 

  71. Chang, C., Zhang, L.: Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 84(1), 40–53 (2011). https://doi.org/10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  72. Curvello, R., Raghuwanshi, V.S., Garnier, G.: Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interfaces. 267, 47–61 (2019). https://doi.org/10.1016/j.cis.2019.03.002

    Article  CAS  Google Scholar 

  73. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015). https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  74. Dong, H., Snyder, J.F., Williams, K.S., Andzelm, J.W.: Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules. 14(9), 3338–3345 (2013). https://doi.org/10.1021/bm400993f

    Article  CAS  PubMed  Google Scholar 

  75. Shi, X., Zheng, Y., Wang, G., Lin, Q., Fan, J.: pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 4(87), 47056–47065 (2014). https://doi.org/10.1039/C4RA09640A

    Article  CAS  Google Scholar 

  76. Martino, M.M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G.A., Müller, R., Livne, E., Eming, S.A., Hubbell, J.A.: Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3(100), 100ra89 (2011). https://doi.org/10.1126/scitranslmed.3002614

    Article  CAS  PubMed  Google Scholar 

  77. Liu, R., Dai, L., Si, C., Zeng, Z.: Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym. 195, 63–70 (2018). https://doi.org/10.1016/j.carbpol.2018.04.085

    Article  CAS  PubMed  Google Scholar 

  78. Supramaniam, J., Adnan, R., Kaus, N.H.M., Bushra, R.: Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 118, 640–648 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.043

    Article  CAS  PubMed  Google Scholar 

  79. Domingues, R.M., Silva, M., Gershovich, P., Betta, S., Babo, P., Caridade, S.G., Mano, J.F., Motta, A., Reis, R.L., Gomes, M.E.: Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug. Chem. 26(8), 1571–1581 (2015). https://doi.org/10.1021/acs.bioconjchem.5b00209

    Article  CAS  PubMed  Google Scholar 

  80. Mohamad, N., Loh, E.Y.X., Fauzi, M.B., Ng, M.H., Amin, M.C.I.M.: In vivo evaluation of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and fibroblasts for burn wounds. Drug Deliv. Transl. Res. 9(2), 444–452 (2019). https://doi.org/10.1007/s13346-017-0475-3

    Article  CAS  PubMed  Google Scholar 

  81. Arias, S.L., Shetty, A., Devorkin, J., Allain, J.P.: Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts. Acta Biomater. 77, 172–181 (2018). https://doi.org/10.1016/j.actbio.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  82. Li, M., Li, F., Wang, T., Zhao, L., Shi, Y.: Fabrication of carboxymethylcellulose hydrogel containing β-cyclodextrin–eugenol inclusion complexes for promoting diabetic wound healing. J. Biomater. Appl. 34(6), 851–863 (2020). https://doi.org/10.1177/0885328219873254

    Article  CAS  PubMed  Google Scholar 

  83. Gao, H., Zhong, Z., Xia, H., Hu, Q., Ye, Q., Wang, Y., Chen, L., Du, Y., Shi, X., Zhang, L.: Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materials. Biomater. Sci. 7(6), 2571–2581 (2019). https://doi.org/10.1039/C9BM00288J

    Article  CAS  PubMed  Google Scholar 

  84. Camarero-Espinosa, S., Rothen-Rutishauser, B., Weder, C., Foster, E.J.: Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials. 74, 42–52 (2016). https://doi.org/10.1016/j.biomaterials.2015.09.033

    Article  CAS  PubMed  Google Scholar 

  85. Tummala, G.K., Joffre, T., Lopes, V.R., Liszka, A., Buznyk, O., Ferraz, N., Persson, C., Griffith, M., Mihranyan, A.: Hyperelastic nanocellulose-reinforced hydrogel of high water content for ophthalmic applications. ACS Biomater Sci. Eng. 2(11), 2072–2079 (2016). https://doi.org/10.1021/acsbiomaterials.6b00484

    Article  CAS  PubMed  Google Scholar 

  86. Chen, X., Zhou, R., Chen, B., Chen, J.: Nanohydroxyapatite/cellulose nanocrystals/silk fibroin ternary scaffolds for rat calvarial defect regeneration. RSC Adv. 6(42), 35684–35691 (2016). https://doi.org/10.1039/C6RA02038K

    Article  CAS  Google Scholar 

  87. Chen, J., Zhuang, A., Shao, H., Hu, X., Zhang, Y.: Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J. Mater. Chem. B. 5(20), 3640–3650 (2017). https://doi.org/10.1039/c7tb00485k

    Article  CAS  PubMed  Google Scholar 

  88. Hou, Y., Wang, X., Yang, J., Zhu, R., Zhang, Z., Li, Y.: Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J. Biomed. Mater. Res. A. 106(5), 1288–1298 (2018). https://doi.org/10.1002/jbm.a.3633

    Article  CAS  PubMed  Google Scholar 

  89. Kim, D.M., Umetsu, M., Takai, K., Matsuyama, T., Ishida, N., Takahashi, H., Asano, R., Kumagai, I.: Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds. Small. 7(5), 656–664 (2011). https://doi.org/10.1002/smll.201002114

    Article  CAS  PubMed  Google Scholar 

  90. Blanchette, C., Lacayo, C.I., Fischer, N.O., Hwang, M., Thelen, M.P.: Enhanced cellulose degradation using cellulase-nanosphere complexes. PLoS One. 7(8), e42116 (2012). https://doi.org/10.1371/journal.pone.0042116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jammalamadaka, U., Tappa, K.: Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9(1), 22 (2018). https://doi.org/10.3390/jfb9010017

    Article  CAS  PubMed Central  Google Scholar 

  92. Wang, X., Wang, Q., Xu, C.: Nanocellulose-based inks for 3D bioprinting: key aspects in research development and challenging perspectives in applications – a mini review. Bioengineering. 7(2), 40 (2020). https://doi.org/10.3390/bioengineering7020040

    Article  CAS  PubMed Central  Google Scholar 

  93. Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hagg, D., Gatenholm, P.: 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 16(5), 1489–1496 (2015). https://doi.org/10.1021/acs.biomac.5b00188

    Article  CAS  PubMed  Google Scholar 

  94. Ávila, H.M., Schwarz, S., Rotter, N., Gatenholm, P.: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting. 1, 22–35 (2016). https://doi.org/10.1016/j.bprint.2016.08.003

    Article  Google Scholar 

  95. Kuzmenko, V., Karabulut, E., Pernevik, E., Enoksson, P., Gatenholm, P.: Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr. Polym. 189, 22–30 (2018). https://doi.org/10.1016/j.carbpol.2018.01.097

    Article  CAS  PubMed  Google Scholar 

  96. Wu, Y., Lin, Z.Y.W., Wenger, A.C., Tam, K.C., Tang, X.S.: 3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink. Bioprinting. 9, 1–6 (2018). https://doi.org/10.1016/j.bprint.2017.12.001

    Article  Google Scholar 

  97. Rashad, A., Mohamed-Ahmed, S., Ojansivu, M., Berstad, K., Yassin, M.A., Kivijärvi, T., Heggset, E.B., Syverud, K., Mustafa, K.: Coating 3D printed polycaprolactone scaffolds with nanocellulose promotes growth and differentiation of mesenchymal stem cells. Biomacromolecules. 19(11), 4307–4319 (2018). https://doi.org/10.1021/acs.biomac.8b01194

    Article  CAS  PubMed  Google Scholar 

  98. Xu, W., Molino, B.Z., Cheng, F., Molino, P.J., Yue, Z., Su, D., Wang, X., Willför, S., Xu, C., Wallace, G.G.: On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (gelma) for 3D printing toward wound healing application. ACS Appl. Mater. Interfaces. 11(9), 8838–8848 (2019). https://doi.org/10.1021/acsami.8b21268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sämfors, S., Karlsson, K., Sundberg, J., Markstedt, K., Gatenholm, P.: Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure. Biofabrication. 11(4), 045010 (2019). https://doi.org/10.1088/1758-5090/ab2b4f

    Article  CAS  PubMed  Google Scholar 

  100. Huang, L., Du, X., Fan, S., Yang, G., Shao, H., Li, D., Cao, C., Zhu, Y., Zhu, M., Zhang, Y.: Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk-based hydrogel scaffold with hierarchical pores. Carbohydr. Polym. 221, 146–156 (2019). https://doi.org/10.1016/j.carbpol.2019.05.080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The corresponding author acknowledges the financial support received from the Department of Science and Technology (DST)-Science Engineering and Research Board (SERB), Government of India, through Start-up Research (SRG/2019/001157) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Shankar Krishnakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahendiran, B., Muthusamy, S., Sampath, S., Jaisankar, S.N., Krishnakumar, G.S. (2022). Nanocelluloses for Tissue Engineering Application. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_37

Download citation

Publish with us

Policies and ethics