Skip to main content

Nanocellulosic Materials for Papermaking and Paper Coating Industry

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Generally, the paper considered to be worthy and valuable material and plays a crucial role in economic, cultural, and historical perspectives. Paper is a biodegradable material and mainly used for various purposes like storing of information (books, magazine, newspaper, art, etc.), packaging (envelope, corrugated box, wrapping material, wallpaper, etc.), personal use (diary, note pad, scratch paper), cleaning paper (toilet paper, tissues, litter paper, paper towels), construction paper (origami, quilling, paper clothing, etc.), paper for research (blotting paper, litmus paper, chromatography paper, butter paper, filter paper, insulation paper, etc.), and value-added paper (bank usage, money, agreement papers, security papers, etc.). The papermaking industry continuously faced many problems in various aspects: (1) increasing the quality of paper employing mechanical, physical, and printing properties, (2) degradation of recycled fibers and (3) restriction in the production cost. The main purpose of the application of nanomaterials in the paper industry is to increase the originality and functionality of paper, such as optical properties, climate resistance properties, and mechanical properties. It is the possible covering of nanofibers with nanostructured materials in paper products as a layer. Nano-based biomaterials like nanocellulose have pursued many advantages to overcome the abovementioned problems. The use of nanocellulosic based material in the paper industry has several advantages like improving paper quality, high surface area, wet strength, stiffness, antimicrobial, electric behavior and biodegradability, renewability, and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanco, A., Miranda, R., Monte, M.C.: Extending the limits of paper recycling: improvements along the paper value chain. For. Syst. 22(3), 471–483 (2013). https://doi.org/10.5424/fs/2013223-03677

    Article  Google Scholar 

  2. Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., Goswami, S.: Commercial application of cellulose nano-composites – a review. Biotechnol. Rep. 21(2018), e00316 (2019). https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  3. Lavoine, N., Desloges, I., Dufresne, A., Bras, J.: Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90(2), 735–764 (2012). https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  4. Nair, S.S., Zhu, J., Deng, Y., Ragauskas, A.J.: High performance green barriers based on nanocellulose. Sustain. Chem. Process. 2(1), 1–7 (2014). https://doi.org/10.1186/s40508-014-0023-0

    Article  CAS  Google Scholar 

  5. Puceković, N., Hooimeijer, A., Lozo, B.: Cellulose nanocrystals coating – a novel paper coating for use in the graphic industry. Acta Graphica - Znanstveni Časopis Za Tiskarstvo i Grafičke Komunikacije. 26(4), 21–26 (2015)

    Google Scholar 

  6. Gicquel, E., Martin, C., Garrido Yanez, J., Bras, J.: Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J. Mater. Sci. 52(6), 3048–3061 (2017). https://doi.org/10.1007/s10853-016-0589-x

    Article  CAS  Google Scholar 

  7. Purington, E., Bousfield, D., Gramlich, W.M.: Fluorescent dye adsorption in aqueous suspension to produce tagged cellulose nanofibers for visualization on paper. Cellulose. 26(8), 5117–5131 (2019). https://doi.org/10.1007/s10570-019-02439-4

    Article  CAS  PubMed  Google Scholar 

  8. Ferrer, A., Pal, L., Hubbe, M.: Nanocellulose in packaging: advances in barrier layer technologies. Ind. Crop. Prod. 95(September), 574–582 (2017). https://doi.org/10.1016/j.indcrop.2016.11.012

    Article  CAS  Google Scholar 

  9. Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulosic nanocomposites: a review. Int. J. Interact. Mob. Technol. 12(3), 929–980 (2018). https://doi.org/10.15376/biores.3.3.929-980

    Article  Google Scholar 

  10. Xie, S., Zhang, X., Walcott, M.P., Lin, H.: Applications of cellulose nanocrystals: a review. Eng. Sci. 2, 4–16 (2018). https://doi.org/10.30919/es.1803302

    Article  Google Scholar 

  11. Sun, B., Hou, Q., Liu, Z., He, Z., Ni, Y.: Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose. 21(4), 2879–2887 (2014). https://doi.org/10.1007/s10570-014-0283-6

    Article  CAS  Google Scholar 

  12. Yang, S., Tang, Y., Wang, J., Kong, F., Zhang, J.: Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind. Eng. Chem. Res. 53, 13980 (2014)

    Article  CAS  Google Scholar 

  13. Han, J., Yue, Y., Wu, Q., Huang, C., Pan, H., Zhan, X., Mei, C., Xu, X.: Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose. 24(10), 4433–4448 (2017). https://doi.org/10.1007/s10570-017-1409-4

    Article  CAS  Google Scholar 

  14. Yang, Y., Chen, Z., Zhang, J., Wang, G., Zhang, R., Suo, D.: Preparation and applications of the cellulose nanocrystal. Int. J. Polym. Sci. 2019, 1767028 (2019a). https://doi.org/10.1155/2019/1767028

    Article  CAS  Google Scholar 

  15. Yang, N., Zhang, W., Ye, C., Chen, X., Ling, S.: Nanobiopolymers Fabrication and Their Life Cycle Assessments. Biotechnol. J. 14(1), 1700754 (2019b). https://doi.org/10.1002/biot.201700754

    Article  CAS  Google Scholar 

  16. Armstrong, S., Dario, P.: Elliptic regularity and quantitative homogenization on percolation clusters. Commun. Pure Appl. Math. 71(9), 1717–1849 (2018). https://doi.org/10.1002/cpa.21726

    Article  Google Scholar 

  17. Villalobos-Castillejos, F., Granillo-Guerrero, V.G., Leyva-Daniel, D.E., Alamilla-Beltrán, L., Gutiérrez-López, G.F., Monroy-Villagrana, A., Jafari, S.M.: Fabrication of nanoemulsions by microfluidization. In: Nanoemulsions: Formulation, Applications, and Characterization, pp. 207–232. Academic Press, London (2018). https://doi.org/10.1016/B978-0-12-811838-2.00008-4

    Chapter  Google Scholar 

  18. Ma, J., Yu, F., Wang, J.N.: Preparation of water-dispersible single-walled carbon nanotubes by freeze-smashing and application as a catalyst support for fuel cells. J. Mater. Chem. 20(27), 5742–5747 (2010a). https://doi.org/10.1039/c0jm00698j

    Article  CAS  Google Scholar 

  19. Ma, H., Yoon, K., Rong, L., Mao, Y., Mo, Z., Fang, D., Hollander, Z., Gaiteri, J., Hsiao, B.S., Chu, B.: High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier layer. J. Mater. Chem. 20(22), 4692 (2010b). https://doi.org/10.1039/b922536f

    Article  CAS  Google Scholar 

  20. Bureau, I.: Cellulose-Containing Waste Materials. pp. 12 (2012)

    Google Scholar 

  21. Mautner, A., Lee, K.-Y., Tammelin, T., Mathew, A.P., Nedoma, A.J., Li, K., Bismarck, A.: Cellulose nanopapers as tight aqueous ultra-filtration membranes. React. Funct. Polym. 86, 209–214 (2015). https://doi.org/10.1016/j.reactfunctpolym.2014.09.014

    Article  CAS  Google Scholar 

  22. Fotie, G., Limbo, S., Piergiovanni, L.: Manufacturing of food packaging based on nanocellulose: current advances and challenges. Nanomaterials. 10(9), 1–26 (2020). https://doi.org/10.3390/nano10091726

    Article  CAS  Google Scholar 

  23. Herrera, M.A.: Preparation and Characterization of Nanocellulose Films and Coatings from Industrial Bio-Residues (2015)

    Google Scholar 

  24. Sousa, R.E., Costa, C.M., Lanceros-Méndez, S.: Advances and future challenges in printed batteries. ChemSusChem. 8(21), 3539–3555 (2015). https://doi.org/10.1002/cssc.201500657

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Q., Xue, C., Li, Y., Zhou, P., Liu, W., Zhu, J., Dai, S., Zhu, C., Yang, S.: Kesterite Cu2 ZnSnS4 as a low-cost inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces. 7(51), 28466–28473 (2015). https://doi.org/10.1021/acsami.5b09572

    Article  CAS  PubMed  Google Scholar 

  26. Ling, S., Chen, W., Fan, Y., Zheng, K., Jin, K., Yu, H., Buehler, M.J., Kaplan, D.L.: Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018). https://doi.org/10.1016/j.progpolymsci.2018.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leijonmarck, S., Cornell, A., Lindbergh, G., Wågberg, L.: Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A. 1(15), 4671 (2013). https://doi.org/10.1039/c3ta01532g

    Article  CAS  Google Scholar 

  28. Xu, J., Zhang, Y., Li, L., Kong, Q., Zhang, L., Ge, S., Yu, J.: Colorimetric and electrochemiluminescence dual-mode sensing of lead ion based on integrated lab-on-paper device. ACS Appl. Mater. Interfaces. 10(4), 3431–3440 (2018). https://doi.org/10.1021/acsami.7b18542

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, G., Cui, Y., Karabulut, E., Wågberg, L., Zhu, H., Hu, L.: Nanostructured paper for flexible energy and electronic devices. MRS Bull. 38(4), 320–325 (2013). https://doi.org/10.1557/mrs.2013.59

    Article  CAS  Google Scholar 

  30. Hu, J., Stein, A., Bühlmann, P.: A disposable planar paper-based potentiometric ion-sensing platform. Angew. Chem. 128(26), 7670–7673 (2016). https://doi.org/10.1002/ange.201603017

    Article  Google Scholar 

  31. Zhang, Y., Li, L., Zhang, L., Ge, S., Yan, M., Yu, J.: In-situ synthesized polypyrrole-cellulose conductive networks for potential-tunable foldable power paper. Nano Energy. 31, 174–182 (2017). https://doi.org/10.1016/j.nanoen.2016.11.029

    Article  CAS  Google Scholar 

  32. Santhiago, M., Strauss, M., Pereira, M.P., Chagas, A.S., Bufon, C.C.B.: Direct drawing method of graphite onto paper for high-performance flexible electrochemical sensors. ACS Appl. Mater. Interfaces. 9(13), 11959–11966 (2017). https://doi.org/10.1021/acsami.6b15646

    Article  CAS  PubMed  Google Scholar 

  33. Nam, Y.J., Cho, S.-J., Oh, D.Y., Lim, J.-M., Kim, S.Y., Song, J.H., Lee, Y.-G., Lee, S.-Y., Jung, Y.S.: Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 15(5), 3317–3323 (2015). https://doi.org/10.1021/acs.nanolett.5b00538

    Article  CAS  PubMed  Google Scholar 

  34. Xu, H., Hu, X., Sun, Y., Yang, H., Liu, X., Huang, Y.: Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8(4), 1148–1158 (2015). https://doi.org/10.1007/s12274-014-0595-8

    Article  CAS  Google Scholar 

  35. Lee, K.B.: Urine-activated paper batteries for biosystems. J. Micromech. Microeng. 15(9), S210–S214 (2005). https://doi.org/10.1088/0960-1317/15/9/S06

    Article  CAS  Google Scholar 

  36. Zhang, H., Qiu, W., Zhang, Y., Han, Y., Yu, M., Wang, Z., Lu, X., Tong, Y.: Surface engineering of carbon fiber paper for efficient capacitive energy storage. J. Mater. Chem. A. 4(47), 18639–18645 (2016). https://doi.org/10.1039/C6TA08138J

    Article  CAS  Google Scholar 

  37. Yuan, T., He, Y.-S., Zhang, W., Ma, Z.-F.: A nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries. Chem. Commun. 52(1), 112–115 (2016). https://doi.org/10.1039/C5CC06964E

    Article  CAS  Google Scholar 

  38. Cheng, Q., Song, Z., Ma, T., Smith, B.B., Tang, R., Yu, H., Jiang, H., Chan, C.K.: Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett. 13(10), 4969–4974 (2013). https://doi.org/10.1021/nl4030374

    Article  CAS  PubMed  Google Scholar 

  39. Wei, X., Tian, T., Jia, S., Zhu, Z., Ma, Y., Sun, J., Lin, Z., Yang, C.J.: Microfluidic distance readout sweet hydrogel integrated paper-based analytical device (μDiSH-PAD) for visual quantitative point-of-care testing. Anal. Chem. 88(4), 2345–2352 (2016). https://doi.org/10.1021/acs.analchem.5b04294

    Article  CAS  PubMed  Google Scholar 

  40. Martinez, A.W., Phillips, S.T., Wiley, B.J., Gupta, M., Whitesides, G.M.: FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 8(12), 2146 (2008). https://doi.org/10.1039/b811135a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liana, D.D., Raguse, B., Gooding, J.J., Chow, E.: An integrated paper-based readout system and piezoresistive pressure sensor for measuring bandage compression. Adv. Mater. Technol. 1(9), 1600143 (2016). https://doi.org/10.1002/admt.201600143

    Article  CAS  Google Scholar 

  42. Tao, L.-Q., Zhang, K.-N., Tian, H., Liu, Y., Wang, D.-Y., Chen, Y.-Q., Yang, Y., Ren, T.-L.: Graphene-paper pressure sensor for detecting human motions. ACS Nano. 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826

    Article  CAS  PubMed  Google Scholar 

  43. Nogi, M., Karakawa, M., Komoda, N., Yagyu, H., Nge, T.T.: Transparent conductive nanofiber paper for foldable solar cells. Sci. Rep. 5(1), 17254 (2015). https://doi.org/10.1038/srep17254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nogi, M., Komoda, N., Otsuka, K., Suganuma, K.: Foldable nanopaper antennas for origami electronics. Nanoscale. 5(10), 4395 (2013). https://doi.org/10.1039/c3nr00231d

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karthika, R., Jayanthi, B., Aruna, A., Selvankumar, T. (2022). Nanocellulosic Materials for Papermaking and Paper Coating Industry. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_1

Download citation

Publish with us

Policies and ethics