Skip to main content

Novel Conservation Strategies to Conserve Australian Marsupials

  • Living reference work entry
  • First Online:
American and Australasian Marsupials

Abstract

The Australian marsupial fauna has been devastated in the past 250 years, mainly due to impacts from invasive mammalian predators (cats and foxes), although other threats such as invasive herbivores, habitat loss and fragmentation, changes to fire regimes, and now climate change have played a role. The profound and ongoing impact of invasive predators has driven substantial research and management innovation. Australia has been at the forefront of developing approaches to reduce the density and impacts of introduced predators and implementing novel and ambitious species conservation programs. A large and growing network of islands and mainland fenced areas, free of introduced predators (“havens”), has been critical for avoiding further species extinctions. Outside these havens, advances in toxin presentation and deployment have enabled cat and fox densities to be reduced over large areas. Substantial research and field trials have been carried out to understand how predator-prey interactions, and habitat quality management, can be used to reduce predation impacts on susceptible native species. Synthetic biology offers new opportunities to manage introduced predators, including potentially by using gene drives. Finally, the attenuation of the formerly large continuous ranges of many species to small, isolated population remnants (because of predation or other reasons) has also driven research and improvements in genetic and metapopulation management that will increase the chance of population persistence in the longer term. However, unless Australia continues to invest in research and innovative conservation actions, the plight of its priceless marsupial fauna will remain perilous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott I (2002) Origin and spread of the cat, Felis catus, on mainland Australia, with a discussion of the magnitude of its early impact on native fauna. Wildl Res 29:51–74

    Article  Google Scholar 

  • Abbott I (2008) The spread of the cat (Felis catus) in Australia: re-examination of the current conceptual model with additional information. Conserv Sci West Aust 7:1–17

    Google Scholar 

  • Aisya Z, White DJ, Thavornkanlapachai R et al (2022) Using PVA and captive breeding to balance trade-offs in the rescue of the island dibbler onto a new island ark. Sci Rep 12:1–15

    Article  Google Scholar 

  • Algar D, Hamilton N, Onus M et al (2011) Field trial to compare baiting efficacy of Eradicat® and Curiosity® baits DEC, Perth

    Google Scholar 

  • Algar D, Johnston M, Clausen L et al (2017) Assessment of the hazard that the Hisstory® bait for feral cats presents to a non-target species; northern quoll (Dasyurus hallucatus), King Leopold Ranges Conservation Park. DBCA, Perth

    Google Scholar 

  • Algar D, Morris K, Asher J et al (2020) Dirk Hartog Island ‘Return to 1616’ Project–The first six years (2014 to 2019). Ecol Manag Restor 21:173–183

    Article  Google Scholar 

  • Allen BL, Lundie-Jenkins G, Burrows ND et al (2014) Does lethal control of top-predators release mesopredators? A re-evaluation of three Australian case studies. Ecol Manag Restor 15:191–195

    Article  Google Scholar 

  • Arthur AD, Catling PC, Reid A (2012) Relative influence of habitat structure, species interactions and rainfall on the post-fire population dynamics of ground-dwelling vertebrates. Austral Ecol 37:958–970

    Article  Google Scholar 

  • Augusteyn J, McCarthy MA, Robley A et al (2022) Bringing back the endangered bridled nail-tailed wallaby at Taunton National Park (Scientific) through effective predator control. Wildl Res 49:382–398

    Article  Google Scholar 

  • Bannister H, Letnic M, Blumstein D et al (2021) Individual traits influence survival of a reintroduced marsupial only at low predator densities. Anim Conserv 24:904–913

    Article  Google Scholar 

  • Barber-Meyer SM (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? J Anim Ecol 84:647–651

    Article  Google Scholar 

  • Blackwood EMJ, Rangers K, Bayley S et al (2021) Pirra Jungku: comparison of traditional and contemporary fire practices on Karajarri Country, Western Australia. Ecol Manag Restor 23:83–92

    Article  Google Scholar 

  • Bradley MP, Hinds LA, Bird PH (1997) A bait-delivered immunocontraceptive vaccine for the European red fox (Vulpes vulpes) by the year 2002? Reprod Fert Develop 9:111–116

    Article  CAS  Google Scholar 

  • Brandle R, Mooney T, de Preu N (2018) Broad-scale feral predator and herbivore control for yellow-footed rock-wallabies: improved resilience for plants and animals = Bounceback. In: Garnett S, Latch P, Lindenmayer D et al (eds) Recovering Australian threatened species: a book of hope. CSIRO Publishing, Melbourne, pp 135–145

    Google Scholar 

  • Broome L, Heinze D, Schroder M (2018) Recovering the mountain pygmy-possum at Mt Blue Cow and Mt Buller. In: Garnett S, Latch P, Lindenmayer D et al (eds) Recovering Australian threatened species: a book of hope. CSIRO Publishing, Melbourne, p 147

    Google Scholar 

  • Burbidge AA (1999) Conservation values and management of Australian islands for non-volant mammal conservation. Aust Mammal 21:67–74

    Article  Google Scholar 

  • Burbidge AA, McKenzie NL (1989) Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biol Conserv 50:143–198

    Article  Google Scholar 

  • Burbidge AA, Johnson KA, Fuller PJ et al (1988) Aboriginal knowledge of the mammals of the central deserts of Australia. Aust Wildl Res 15:9–39

    Article  Google Scholar 

  • Burbidge AA, Legge S, Woinarski JCZ (2018) Australian islands as ‘Arks’ for biodiversity. In: Moro D, Ball D, Bryant S (eds) Australian Island Arks: conservation, management and opportunities. CSIRO Publishing, Melbourne, pp 99–113

    Google Scholar 

  • Burns RJ, Zemlicka DE, Savarie PJ (1996) Effectiveness of large livestock protection collars against depredating coyotes. Wildl Soc Bull 24:123–127

    Google Scholar 

  • Campbell KJ, Saah JR, Brown PR et al (2019) A potential new tool for the toolbox: assessing gene drives for eradicating invasive rodent populations. USDA National Wildlife Res Center – Staff Publications 2235

    Google Scholar 

  • Carthey AJ, Blumstein DT (2018) Predicting predator recognition in a changing world. Trends Ecol Evol 33:106–115

    Article  Google Scholar 

  • Contos P, Letnic M (2019) Top-down effects of a large mammalian carnivore in arid Australia extend to epigeic arthropod assemblages. J Arid Environ 165:16–27

    Article  Google Scholar 

  • Cooke B, Chudleigh P, Simpson S et al (2013) The economic benefits of the biological control of rabbits in Australia, 1950–2011. Aust Econ Hist Rev 53:91–107

    Article  Google Scholar 

  • Corlett RT (2016) Restoration, reintroduction, and rewilding in a changing world. Trends Ecol Evol 31:453–462

    Article  Google Scholar 

  • Courchamp F, Cornell SJ (2000) Virus-vectored immunocontraception to control feral cats on islands: a mathematical model. J Appl Ecol 37:903–913

    Article  Google Scholar 

  • Courchamp F, Langlais M, Sugihara G (2000) Rabbits killing birds: modelling the hyperpredation process. J Appl Ecol 69:154–164

    Article  Google Scholar 

  • Crooks KR, Soule ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566

    Article  CAS  Google Scholar 

  • Cunningham CX, Johnson CN, Jones ME (2019) Harnessing the power of ecological interactions to reduce the impacts of feral cats. Biodiversity 20:43–47

    Article  Google Scholar 

  • Cunningham CX, Comte S, McCallum H et al (2021) Quantifying 25 years of disease-caused declines in Tasmanian devil populations: host density drives spatial pathogen spread. Ecol Lett 24:958–969

    Article  Google Scholar 

  • de Tores P, Hayward M, Rosier S (2004) The western ringtail possum, Pseudocheirus occidentalis, and the quokka, Setonix brachyurus, case studies: Western Shield review – February 2003. Conserv Sci West Aust 5:235–257

    Google Scholar 

  • Delroy LB, Earl J, Radbone I et al (1986) The breeding and reestablishment of the Brush-Tailed Bettong, Bettongia penicillata, in South Australia. Wildl Res 13:387–396

    Article  Google Scholar 

  • Dunlop J, Rippey E, Bradshaw L et al (2015) Recovery of seabird colonies on Rat Island (Houtman Abrolhos) following the eradication of introduced predators. J R Soc West Aust 98:29–36

    Google Scholar 

  • Eade JA, Roberston ID, James CM (2009) Contraceptive potential of porcine and feline zona pellucida A, B and C subunits in domestic cats. Reproduction 137:913–922

    Article  CAS  Google Scholar 

  • Eason CT, Miller A, MacMorran DB et al (2014) Toxicology and ecotoxicology of para-aminopropiophenone (PAPP)–a new predator control tool for stoats and feral cats in New Zealand. N Z J Ecol 38:177–188

    Google Scholar 

  • Evans MJ, Batson WG, Gordon IJ et al (2021) The ‘goldilocks zone’ of predation: the level of fox control needed to select predator resistance in a reintroduced mammal in Australia. Biodivers Conserv 30:1731–1752

    Article  Google Scholar 

  • Evans MJ, Weeks AR, Scheele BC et al (2022) Coexistence conservation: reconciling threatened species and invasive predators through adaptive ecological and evolutionary approaches. Conserv Sci Pract 2022;4: e12742

    Google Scholar 

  • Fairfax RJ (2019) Dispersal of the introduced red fox (Vulpes vulpes) across Australia. Biol Invas 21:1259–1268

    Article  Google Scholar 

  • Fancourt BA, Hawkins CE, Cameron EZ et al (2015) Devil declines and catastrophic cascades: is mesopredator release of feral cats inhibiting recovery of the eastern quoll? PLoS One 10:e0119303

    Article  Google Scholar 

  • Finlayson HH (1961) On central Australian mammals. IV. The distribution and status of central Australian species. Rec S Aust Mus 14:141–191

    Google Scholar 

  • Fisher DO, Johnson CN, Lawes MJ et al (2014) The current decline of tropical marsupials in Australia: is history repeating? Glob Ecol Biogeogr 23:181–190

    Article  Google Scholar 

  • Gantz VM, Jasinskiene N, Tatarenkova O et al (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A 112:E6736–E6743

    Article  CAS  Google Scholar 

  • Glassock GL, Grueber CE, Belov K et al (2021) Reducing the extinction risk of populations threatened by infectious diseases. Diversity 13:63

    Article  Google Scholar 

  • Gordon CE, Eldridge DJ, Ripple WJ et al (2017) Shrub encroachment is linked to extirpation of an apex predator. J Anim Ecol 86:147–157

    Article  Google Scholar 

  • Griffiths AD, Rankmore B, Brennan K et al (2017) Demographic evaluation of translocating the threatened northern quoll to two Australian islands. Wildl Res 44:238–247

    Article  Google Scholar 

  • Hardman B, Moro D, Calver M (2016) Direct evidence implicates feral cat predation as the primary cause of failure of a mammal reintroduction programme. Ecol Manag Restor 17:152–158

    Article  Google Scholar 

  • Hayward M, Kerley G (2008) Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes? Biol Conserv 142:1–13

    Article  Google Scholar 

  • Hayward MW, Marlow N (2014) Will dingoes really conserve wildlife and can our methods tell? J Appl Ecol 51:835–838

    Article  Google Scholar 

  • Hayward MW, Moseby K, Read JL (2014) The role of predator exclosures in the conservation of Australian fauna. In: Glen A, Dickman C (eds) Carnivores of Australia: past, present and future. CSIRO Publishing, Melbourne, pp 353–371

    Google Scholar 

  • Hayward M, Ward-Fear G, L’Hotellier F et al (2016) Could biodiversity loss have increased Australia’s bushfire threat? Anim Conserv 19:490–497

    Article  Google Scholar 

  • Hayward MW, Scanlon RJ, Callen A et al (2019) Reintroducing rewilding to restoration–rejecting the search for novelty. Biol Conserv 233:255–259

    Article  Google Scholar 

  • Hetherington CA, Algar D, Mills H et al (2007) Increasing the target-specificity of ERADICAT® for feral cat (Felis catus) control by encapsulating a toxicant. Wildl Res 34:467–471

    Article  Google Scholar 

  • Hoffmann AA, Montgomery B, Popovici J et al (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457

    Article  CAS  Google Scholar 

  • Hoffmann AA, Miller AD, Weeks AR (2021a) Genetic mixing for population management: from genetic rescue to provenancing. Evol App 14:634–652

    Article  Google Scholar 

  • Hoffmann AA, Weeks AR, Sgrò CM (2021b) Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184:1420–1425

    Article  CAS  Google Scholar 

  • Hohnen R, Tuft K, Legge S et al (2016) The significance of topographic complexity in habitat selection and persistence of a declining marsupial in the Kimberley region of Western Australia. Aust J Zool 64:198–216

    Article  Google Scholar 

  • Hohnen R, James AI, Jennings P et al (2023) Abundance and detection of feral cats decreases after severe fire on Kangaroo Island, Australia. Aust Ecol (in press)

    Google Scholar 

  • Hollings T, Jones M, Mooney N et al (2014) Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil. Conserv Biol 28:63–75

    Article  Google Scholar 

  • Hradsky BA, Mildwaters C, Ritchie EG et al (2017) Responses of invasive predators and native prey to a prescribed forest fire. J Mammal 98:835–847

    Article  Google Scholar 

  • Hunter DO, Britz T, Jones M et al (2015) Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biol Conserv 191:428–435

    Article  Google Scholar 

  • Jessop TS, Kearney MR, Moore JL et al (2013) Evaluating and predicting risk to a large reptile (Varanus varius) from feral cat baiting protocols. Biol Invas 15:1653–1663

    Article  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  • Johnson CN, Isaac JL (2009) Body mass and extinction risk in Australian marsupials: the ‘critical weight range’ revisited. Aust Ecol 34:35–40

    Article  Google Scholar 

  • Johnson CN, Isaac JL, Fisher DO (2007) Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Proc R Soc B: Biol Sci 274:341–346

    Article  Google Scholar 

  • Johnson CN, Magrath M, van Bommel L (2021) Using livestock guardian dogs to protect threatened species. Project 1.1.8 Research findings factsheet NESP Threatened Species Recovery Hub, Brisbane

    Google Scholar 

  • Johnston M, Algar D, O’Donoghue M et al (2020) Efficacy and welfare assessment of an encapsulated para-aminopropiophenone (PAPP) formulation as a bait-delivered toxicant for feral cats (Felis catus). Wildl Res 47:686–697

    Article  Google Scholar 

  • Jolly C, Webb J, Phillips B (2018) The perils of paradise: antipredator behaviours missing from an endangered species conserved on an island. Biol Lett 14:20180222

    Article  Google Scholar 

  • Kearney SG, Carwardine J, Reside AE et al (2018) The threats to Australian imperiled species. Pac Conserv Biol 25:231–244

    Article  Google Scholar 

  • Kingsford RT, West RS, Pedler RD et al (2021) Strategic adaptive management planning – restoring a desert ecosystem by managing introduced species and native herbivores and reintroducing mammals. Conserv Sci Prac 3:e268

    Article  Google Scholar 

  • Langford D, Burbidge AA (2001) Translocation of mala (Lagorchestes hirsutus) from the Tanami desert, Northern Territory to Trimouille island, Western Australia. Aust Mammal 23:37–46

    Article  Google Scholar 

  • Leahy L, Legge S, Tuft K et al (2016) Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl Res 42:705–716

    Article  Google Scholar 

  • Legge S, Kennedy M, Lloyd R et al (2011) Rapid recovery of mammal fauna in the Central Kimberley, northern Australia, following the removal of introduced herbivores. Aust Ecol 36:791–799

    Article  Google Scholar 

  • Legge S, Murphy BP, McGregor H et al (2017) Enumerating a continental-scale threat: how many feral cats are in Australia? Biol Conserv 206:293–303

    Article  Google Scholar 

  • Legge S, Woinarski JCZ, Burbidge AA et al (2018) Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to protecting mammal species that are susceptible to introduced predators. Wildl Res 45:627–644

    Article  Google Scholar 

  • Legge S, Smith JG, James A et al (2019) Interactions among threats affect conservation management outcomes: livestock grazing removes the benefits of fire management for small mammals in Australian tropical savannas. Conserv Sci Pract 2019;1:e52

    Google Scholar 

  • Letnic M, Koch F (2010) Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence. Austral Ecol 35:167–175

    Article  Google Scholar 

  • Letnic M, Ritchie EG, Dickman CR (2012) Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol Rev 87:390–413

    Article  Google Scholar 

  • Lindenmayer DB, Blanchard W, Blair D et al (2020) The response of arboreal marsupials to long-term changes in forest disturbance. Anim Conserv 24:246–258

    Article  Google Scholar 

  • Lundgren EJ, Ramp D, Rowan J et al (2020) Introduced herbivores restore Late Pleistocene ecological functions. Proc Natl Acad Sci U S A 117:7871–7878

    Article  CAS  Google Scholar 

  • Lundie-Jenkins G (1993) Ecology of the rufous hare-wallaby, Lagorchestes hirsutus Gould (Marsupialia: Macropodidae) in the Tanami Desert, Northern Territory. I. Patterns of habitat use. Wildl Res 20:457–475

    Article  Google Scholar 

  • Martin GM, González B, Brook F et al (2023) Conservation biogeography of living new world marsupials (Didelphimorphia, Microbiotheria, and Paucituberculata). In: Cáceres NC, Dickman CR (eds) American and Australasian Marsupials: an evolutionary, biogeographical, and ecological approach. Springer Nature, Cham

    Google Scholar 

  • McDonald P, Stewart A, Tyne J (2017) Experimental feral cat control using the Eradicat® bait in the MacDonnell Ranges. DENRs, NT Gov, Alice Springs

    Google Scholar 

  • McGregor HW, Legge S, Jones ME et al (2014) Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS One 9:e109097

    Article  Google Scholar 

  • McGregor HW, Legge S, Jones ME et al (2015) Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS One 10:e0133915

    Article  Google Scholar 

  • McGregor HW, Legge SM, Jones ME et al (2016) Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci Rep 6:22559

    Article  CAS  Google Scholar 

  • McGregor H, Moseby K, Johnson CN et al (2020) The short-term response of feral cats to rabbit population decline: are alternative native prey more at risk? Biol Invas 1–13

    Google Scholar 

  • Mitrovski P, Heinze DA, Broome L et al (2007) High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Mol Ecol 16:75–87

    Article  CAS  Google Scholar 

  • Mitrovski P, Hoffmann A, Heinze D et al (2008) Rapid loss of genetic variation in an endangered possum. Biol Lett 4:134–138

    Article  CAS  Google Scholar 

  • Moodie E (1995) The potential for biological control of feral cats in Australia. ANCA, Canberra

    Google Scholar 

  • Moore HA, Dunlop JA, Jolly CJ et al (2021) A brief history of the northern quoll (Dasyurus hallucatus): a systematic review. Aust Mammal 44:185–207

    Article  Google Scholar 

  • Morris T, Letnic M (2017) Removal of an apex predator initiates a trophic cascade that extends from herbivores to vegetation and the soil nutrient pool. Proc R Soc Lond B 284:20170111

    Google Scholar 

  • Moseby KE, Hill BM, Read JL (2009) Arid recovery–a comparison of reptile and small mammal populations inside and outside a large rabbit, cat and fox-proof exclosure in arid South Australia. Aust Ecol 34:156–169

    Article  Google Scholar 

  • Moseby K, Read J, Paton D et al (2011) Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biol Conserv 144:2863–2872

    Article  Google Scholar 

  • Moseby KE, Peacock DE, Read JL (2015) Catastrophic cat predation: a call for predator profiling in wildlife protection programs. Biol Conserv 191:331–340

    Article  Google Scholar 

  • Moseby KE, Letnic M, Blumstein DT et al (2019) Understanding predator densities for successful co-existence of alien predators and threatened prey. Aust Ecol 44:409–419

    Article  Google Scholar 

  • Mutze G, Cooke B, Alexander P (1998) The initial impact of rabbit hemorrhagic disease on European rabbit populations in South Australia. J Wildl Dis 34:221–227

    Article  CAS  Google Scholar 

  • Newsome TM, Ballard GA, Crowther MS et al (2015) Resolving the value of the dingo in ecological restoration. Restor Ecol 23:201–208

    Article  Google Scholar 

  • Newsome TM, Greenville AC, Ćirović D et al (2017) Top predators constrain mesopredator distributions. Nat Commun 8:15469

    Article  CAS  Google Scholar 

  • Palmer BJ, Valentine LE, Page M et al (2020) Translocations of digging mammals and their potential for ecosystem restoration: a review of goals and monitoring programmes. Mammal Rev 50:382–398

    Article  Google Scholar 

  • Paltridge R, Ward NN, West JT et al (2020) Is cat hunting by Indigenous tracking experts an effective way to reduce cat impacts on threatened species? Wildl Res 47:709–719

    Article  Google Scholar 

  • Parkins K, York A, Di Stefano J (2018) Edge effects in fire-prone landscapes: ecological importance and implications for fauna. Ecol Evol 8:5937–5948

    Article  Google Scholar 

  • Pedler RD, Brandle R, Read JL et al (2016) Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. Conserv Biol 30:774–782

    Article  Google Scholar 

  • Possingham HP, Jarman P, Kearns AJ (2004) Independent review of Western Shield – February 2003. Conserv Sci West Aust 5:2–11

    Google Scholar 

  • Read JL, Bowden T, Hodgens P et al (2019) Target specificity of the felixer grooming “trap”. Wildl Soc Bull 43:112–120

    Article  Google Scholar 

  • Ringma J, Legge S, Woinarski J et al (2018) Australia’s mammal fauna requires a strategic and enhanced network of predator-free havens. Nat Ecol Evol 2:410–411

    Article  Google Scholar 

  • Ringma J, Legge S, Woinarski JCZ et al (2019) Strategic planning can rapidly close the protection gap in Australian mammal havens. Conserv Lett 12(1):e12611

    Article  Google Scholar 

  • Ripple WJ, Beschta RL, Fortin JK et al (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. J Anim Ecol 83:223–233

    Article  Google Scholar 

  • Robinson T, Canty P, Mooney T et al (1996) South Australia’s offshore islands. AHC, Canberra

    Google Scholar 

  • Roshier D, L’Hotellier F, Carter A et al (2020) Long-term benefits and short-term costs: small vertebrate responses to predator exclusion and native mammal reintroductions in south-west NSW, Australia. Wildl Res 47:570–579

    Article  Google Scholar 

  • Schipper J, Chanson JS, Chiozza F et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230

    Article  CAS  Google Scholar 

  • Scoleri VP, Johnson CN, Vertigan P et al (2020) Conservation trade-offs: Island introduction of a threatened predator suppresses invasive mesopredators but eliminates a seabird colony. Biol Conserv 248:108635

    Article  Google Scholar 

  • Sgrò CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  Google Scholar 

  • Short J (1998) The extinction of rat-kangaroos (Marsupialia: Potoroidae) in New South Wales, Australia. Biol Conserv 86:365–377

    Article  Google Scholar 

  • Short J (2009) The characteristics and success of vertebrate translocations within Australia. Wildlife Research and Management Pty Ltd/Australian DAFF, Perth/Canberra

    Google Scholar 

  • Short J, Turner B (1992) The distribution and abundance of the banded and rufous hare-wallabies, Lagostrophus fasciatus and Lagorchestes hirsutus. Biol Conserv 60:157–166

    Article  Google Scholar 

  • Smith A, Quin D (1996) Patterns and causes of extinction and decline in Australian conilurine rodents. Biol Conserv 77:243–267

    Article  Google Scholar 

  • Soulé M, Noss R (1998) Rewilding and biodiversity: complementary goals for continental conservation. Wildl Earth 8:18–28

    Google Scholar 

  • Springer K (2018) Island pest management. In: Moro D, Ball D, Bryant S (eds) Australian island arks: conservation, management and opportunities. CSIRO Publishing, Melbourne, pp 85–98

    Google Scholar 

  • Stobo-Wilson AM, Stokeld D, Einoder LD et al (2020a) Bottom-up and top-down processes influence contemporary patterns of mammal species richness in Australia’s monsoonal tropics. Biol Conserv 247:108638

    Article  Google Scholar 

  • Stobo-Wilson AM, Stokeld D, Einoder LD et al (2020b) Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Divers Distrib 26:832–842

    Google Scholar 

  • Sweeney OF, Turnbull J, Jones M et al (2019) An Australian perspective on rewilding. Conserv Biol 33:812–820

    Article  Google Scholar 

  • Swinbourne MJ, Taggart DA, Peacock D et al (2016) Historical changes in the distribution of hairy-nosed wombats (Lasiorhinus spp.): a review. Aust Mammal 39:1–16

    Article  Google Scholar 

  • Thavornkanlapachai R, Mills HR, Ottewell K et al (2019) Mixing genetically and morphologically distinct populations in translocations: asymmetrical introgression in a newly established population of the boodie (Bettongia lesueur). Genes 10:729

    Article  CAS  Google Scholar 

  • Valentine LE, Bretz M, Ruthrof KX et al (2017) Scratching beneath the surface: bandicoot bioturbation contributes to ecosystem processes. Aust Ecol 42:265–276

    Article  Google Scholar 

  • van Bommel L (2010) Guardian dogs: best practice manual for the use of livestock guardian dogs. IA CRC, Canberra

    Google Scholar 

  • van Bommel L, Johnson CN (2016) Livestock guardian dogs as surrogate top predators? How Maremma sheepdogs affect a wildlife community. Ecol Evol 6:6702–6711

    Article  Google Scholar 

  • Wagner B, Baker PJ, Stewart SB et al (2020) Climate change drives habitat contraction of a nocturnal arboreal marsupial at its physiological limits. Ecosphere 11:e03262

    Article  Google Scholar 

  • Wallis R, King K, Wallis A (2017) The Little Penguin Eudyptula minor on Middle Island, Warrnambool, Victoria: an update on population size and predator management. Vic Nat 134:48–51

    Google Scholar 

  • Waugh C, Hanger J, Timms P et al (2016) Koala translocations and Chlamydia: managing risk in the effort to conserve native species. Biol Conserv 197:247–253

    Article  Google Scholar 

  • Wayne AF, Maxwell MA, Ward CG et al (2017a) Recoveries and cascading declines of native mammals associated with control of an introduced predator. J Mammal 98:489–501

    Article  Google Scholar 

  • Wayne AF, Wilson BA, Woinarski JCZ (2017b) Falling apart? Insights and lessons from three recent studies documenting rapid and severe decline in terrestrial mammal assemblages of northern, south-eastern and south-western Australia. Wildl Res 44:114–126

    Article  Google Scholar 

  • Weeks AR, Sgro CM, Young AG et al (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol App 4:709–725

    Article  Google Scholar 

  • Weeks AR, van Rooyen A, Mitrovski P et al (2013) A species in decline: genetic diversity and conservation of the Victorian eastern barred bandicoot, Perameles gunnii. Conserv Genet 14:1243–1254

    Article  Google Scholar 

  • Weeks AR, Moro D, Thavornkanlapachai R et al (2015) Conserving and enhancing genetic diversity in translocation programs. In: Armstrong DP, Hayward MW, Moro D et al (eds) Advances in reintroduction biology of Australian and New Zealand fauna. CSIRO Publishing, Melbourne, pp 127–140

    Google Scholar 

  • Weeks AR, Stoklosa J, Hoffmann AA (2016) Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Front Zool 13:1–9

    Article  Google Scholar 

  • Weeks AR, Heinze D, Perrin L et al (2017) Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat Commun 8:1–6

    Article  CAS  Google Scholar 

  • West R, Letnic M, Blumstein DT et al (2018) Predator exposure improves anti-predator responses in a threatened mammal. J Appl Ecol 55:147–156

    Article  Google Scholar 

  • White LC, Moseby KE, Thomson VA et al (2018) Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol Conserv 219:1–11

    Article  Google Scholar 

  • White DJ, Ottewell K, Spencer PB et al (2020a) Genetic consequences of multiple translocations of the banded hare-wallaby in Western Australia. Diversity 12:448

    Article  Google Scholar 

  • White LC, Thomson VA, West R et al (2020b) Genetic monitoring of the greater stick-nest rat meta-population for strategic supplementation planning. Conserv Genet 21:941–956

    Article  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC et al (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Ann Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Willi Y, Kristensen TN, Sgrò CM et al (2022) Conservation genetics as a management tool: the five best-supported paradigms to assist the management of threatened species. Proc Natl Acad Sci U S A 119:e2105076119

    Article  CAS  Google Scholar 

  • Woinarski JCZ, Fisher DO (2023) Conservation biogeography of Australasian marsupials. In: Cáceres NC, Dickman CR (eds) American and Australasian marsupials: an evolutionary, biogeographical, and ecological approach. Springer Nature, Cham

    Google Scholar 

  • Woinarski JCZ, Burbidge AA, Harrison PL (2014) The action plan for Australian mammals 2012. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • Woinarski J, Braby M, Burbidge A et al (2019a) Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. Biol Conserv 239:108261

    Article  Google Scholar 

  • Woinarski JCZ, Legge SM, Dickman CR (2019b) Cats in Australia: companion and killer. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • Zilko JP, Harley D, Pavlova A et al (2021) Applying population viability analysis to inform genetic rescue that preserves locally unique genetic variation in a critically endangered mammal. Diversity 13:382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Legge .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Legge, S., Hayward, M., Weeks, A. (2023). Novel Conservation Strategies to Conserve Australian Marsupials. In: Cáceres, N.C., Dickman, C.R. (eds) American and Australasian Marsupials. Springer, Cham. https://doi.org/10.1007/978-3-030-88800-8_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88800-8_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88800-8

  • Online ISBN: 978-3-030-88800-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics