Skip to main content

Time Series Data Analysis Using Deep Learning Methods for Smart Cities Monitoring

  • Chapter
  • First Online:
Big Data Intelligence for Smart Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 994))

Abstract

A time series is a sequence of empirical data ordered as a function of time. Time series analysis models exploit forecasting techniques based solely on the history of the variable of interest. They work by capturing patterns in historical data and extrapolating them into the future. The Times Series features recurring structures that can be captured through careful and precise analysis of its performance. Machine Learning-based methods are able to identify these recurring structures fully automatically. In this chapter we have faced the problem of the elaboration of forecasting models based on Deep Learning algorithms for data with time series characteristics. First, we introduced the Time Series, and we analyzed the most popular forecast models based on the traditional methodologies of classical Statistics. Next, we introduced Deep Learning-based methodologies that are inspired by the structure and function of the brain and which have proven effective in capturing the recurring characteristics of time series. In this context, we developed a model based on Recurrent Neural Networks for the prediction of equivalent noise levels produced by a road infrastructure. The model based on the LSTM was able to memorize the recurring structures present in the trend of the noise values ​​and in the forecast, it preserved the daily and weekly trend characteristics already verified through a visual analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Abanda, U. Mori, J.A. Lozano, A review on distance based time series classification. Data Min. Knowl. Disc. 33(2), 378–412 (2019)

    Article  MathSciNet  Google Scholar 

  • O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, N.A. Mohamed, H. Arshad, State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11), e00938. (2018)

    Google Scholar 

  • C. Anitescu, E. Atroshchenko, N. Alajlan, T. Rabczuk, Artificial neural network methods for the solution of second order boundary value problems. Comput. Mater. Continua 59(1), 345–359 (2019)

    Article  Google Scholar 

  • L. Arras, G. Montavon, K.R. Müller, W. Samek, Explaining recurrent neural network predictions in sentiment analysis (2017). arXiv:1706.07206

  • P.J. Brockwell, R.A. Brockwell, R.A. Davis, R.A. Davis, Introduction to Time Series and forecasting (Springer, 2016)

    Google Scholar 

  • M.G. Baydogan, G. Runger, Time series representation and similarity based on local autopatterns. Data Min. Knowl. Disc. 30(2), 476–509 (2016)

    Article  MathSciNet  Google Scholar 

  • C. Chatfield, H. Xing, The Analysis of Time Series: An Introduction with R (CRC Press, 2019)

    Book  Google Scholar 

  • M. Christ, N. Braun, J. Neuffer, A.W. Kempa-Liehr, Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  • G. Ciaburro, G. Iannace, J. Passaro, A. Bifulco, D. Marano, M. Guida, ... F. Branda, Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly (vinyl pyrrolidone)/silica composite. Appl. Acoustics 169, 107472 (2020)

    Google Scholar 

  • M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Google Scholar 

  • G. Ciaburro, G. Iannace, M. Ali, A. Alabdulkarem, A. Nuhait, An artificial neural network approach to modelling absorbent asphalts acoustic properties. J. King Saud Univ.-Eng. Sci. (2020)

    Google Scholar 

  • G. Ciaburro, G. Iannace, Acoustic characterization of rooms using reverberation time estimation based on supervised learning algorithm. Appl. Sci. 11(4), 1661 (2021)

    Article  Google Scholar 

  • T.M. Choi, S.W. Wallace, Y. Wang, Big data analytics in operations management. Prod. Oper. Manag. 27(10), 1868–1883 (2018)

    Article  Google Scholar 

  • G. Ciaburro, Sound event detection in underground parking garage using convolutional neural network. Big Data Cogn. Comput. 4(3), 20 (2020)

    Article  Google Scholar 

  • G. Ciaburro, G. Iannace, Improving smart cities safety using sound events detection based on deep neural network algorithms, in Informatics, vol. 7, No. 3 (Multidisciplinary Digital Publishing Institute, Sep. 2020) ,p. 23

    Google Scholar 

  • A. Can, L. Leclercq, J. Lelong, J. Defrance, Capturing urban traffic noise dynamics through relevant descriptors. Appl. Acoust. 69(12), 1270–1280 (2008)

    Article  Google Scholar 

  • F. Cirianni, G. Leonardi, Environmental modeling for traffic noise in urban area. Am. J. Environ. Sci. 8(4), 345 (2012)

    Article  Google Scholar 

  • J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods (Oxford University Press, 2012)

    Book  Google Scholar 

  • Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, ... J. Dean, A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29 (2019)

    Google Scholar 

  • W.A. Fuller, Introduction to Statistical Time Series, vol. 428. (Wiley, 2009)

    Google Scholar 

  • B.D. Fulcher, Feature-based Time-series Analysis (2017). arXiv:1709.08055

  • D. Folgado, M. Barandas, R. Matias, R. Martins, M. Carvalho, H. Gamboa, Time alignment measurement for time series. Pattern Recogn. 81, 268–279 (2018)

    Article  Google Scholar 

  • T. Fischer, C. Krauss, Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)

    Article  MathSciNet  Google Scholar 

  • I. Goodfellow, Y. Bengio, A. Courville, Mach. Learn. Basics. Deep Learn. 1, 98–164 (2016)

    Google Scholar 

  • C.W.J. Granger, P. Newbold, Forecasting Economic Time Series (Academic Press, 2014)

    MATH  Google Scholar 

  • M. Gevrey, I. Dimopoulos, S. Lek, Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160(3), 249–264 (2003)

    Article  Google Scholar 

  • A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media (2019)

    Google Scholar 

  • J.D. Hamilton, Time Series Analysis (Princeton University Press, 2020)

    Book  Google Scholar 

  • Hannan, E. J. (2009). Multiple time series (Vol. 38). John Wiley & Sons.

    Google Scholar 

  • M.H. Hassoun, Fundamentals of Artificial Neural Networks (MIT Press, 1995)

    Google Scholar 

  • S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  • ISO 1996–2: 2017. Description, measurement and assessment of environmental noise. Part 2: determination of sound pressure levels. Switzerland: International Organization for Standardization (2017)

    Google Scholar 

  • M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  • J.H. Ko, S.I. Chang, M. Kim, J.B. Holt, J.C. Seong, Transportation noise and exposed population of an urban area in the Republic of Korea. Environ. Int. 37(2), 328–334 (2011)

    Article  Google Scholar 

  • K. Kumar, V.K. Katiyar, M. Parida, K. Rawat, Mathematical modeling of road traffic noise prediction. Int. J. Appl. Math Mech, 7(4), 21–28 (2011)

    Google Scholar 

  • B. Kulauzović, T. Pejanović Nosaka, J. Jamnik, Relationship between weight of the heavy trucks and traffic noise pollution in the viewpoint of feasibility of fines for exceeded noise–a case study, in Proceedings of 8th Transport Research Arena TRA (2020)

    Google Scholar 

  • H. Lütkepohl, Introduction to Multiple Time Series Analysis (Springer Science & Business Media, 2013)

    Google Scholar 

  • H. Lütkepohl, New Introduction to Multiple time Series Analysis (Springer Science & Business Media, 2005)

    Google Scholar 

  • J.C.W. Lin, Y. Shao, Y. Djenouri, U. Yun, ASRNN: a recurrent neural network with an attention model for sequence labeling. Knowl.-Based Syst. 212, 106548 (2021)

    Google Scholar 

  • S. Li, W. Li, C. Cook, C. Zhu, Y. Gao, Independently recurrent neural network (indrnn): Building a longer and deeper rnn, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5457–5466 (2018)

    Google Scholar 

  • M. Mohri, A. Rostamizadeh, A., A. Talwalkar, Foundations of Machine Learning (MIT Press, 2018)

    Google Scholar 

  • V.K. Murthy, A.K. Majumder, S.N. Khanal, D.P. Subedi, Assessment of traffic noise pollution in Banepa, a semi urban town of Nepal. Kathmandu Univ. J. Sci. Eng. Technol. 3(2), 12–20 (2007)

    Article  Google Scholar 

  • S. Moritz, T. Bartz-Beielstein, imputeTS: time series missing value imputation in R. R J. 9(1), 207 (2017)

    Article  Google Scholar 

  • S. Ng, P. Perron, A note on the selection of time series models. Oxford Bull. Econ. stat. 67(1), 115–134 (2005)

    Google Scholar 

  • M. Ögren, P. Molnár, L. Barregard, Road traffic noise abatement scenarios in Gothenburg 2015–2035. Environ. Res. 164, 516–521 (2018)

    Article  Google Scholar 

  • H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, ... Q. Zhang, Time-series anomaly detection service at Microsoft, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3009–3017, July 2019

    Google Scholar 

  • V. Rajaraman, Big data analytics. Resonance 21(8), 695–716 (2016)

    Article  Google Scholar 

  • B. Ristevski, M. Chen, Big data analytics in medicine and healthcare. J. integr. Bioinf. 15(3) (2018)

    Google Scholar 

  • S.E. Said, D.A. Dickey, Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3), 599–607 (1984)

    Article  MathSciNet  Google Scholar 

  • T.J. Sejnowski, The Deep Learning Revolution (Mit Press, 2018)

    Google Scholar 

  • R.B. Smith, D. Fecht, J. Gulliver, S.D. Beevers, D. Dajnak, M. Blangiardo, ... M.B. Toledano, Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study. Bmj, 359 (2017)

    Google Scholar 

  • C. Steele, A critical review of some traffic noise prediction models. Appl. Acoust. 62(3), 271–287 (2001)

    Article  Google Scholar 

  • A. Sherstinsky, Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306 (2020)

    Google Scholar 

  • R.S. Tsay, Analysis of Financial Time Series, vol. 543 (Wiley, 2005)

    Google Scholar 

  • The R Datasets Package (2021). https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html Accessed 15 April 2021

  • C.W. Tsai, C.F. Lai, H.C. Chao, A.V. Vasilakos, Big data analytics: a survey. J. Big Data 2(1), 1–32 (2015)

    Article  Google Scholar 

  • A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. (2018)

    Google Scholar 

  • A.S. Weigend, Time Series Prediction: Forecasting the Future and Understanding the Past (Routledge, 2018)

    Book  Google Scholar 

  • W.W. Wei, Time series analysis, in The Oxford Handbook of Quantitative Methods in Psychology, vol. 2 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Ciaburro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciaburro, G. (2022). Time Series Data Analysis Using Deep Learning Methods for Smart Cities Monitoring. In: Baddi, Y., Gahi, Y., Maleh, Y., Alazab, M., Tawalbeh, L. (eds) Big Data Intelligence for Smart Applications. Studies in Computational Intelligence, vol 994. Springer, Cham. https://doi.org/10.1007/978-3-030-87954-9_4

Download citation

Publish with us

Policies and ethics