Skip to main content

Waterborne and Foodborne Zoonoses

Cryptosporidium and Cryptosporidiosis: Trickle or Treat?

  • Living reference work entry
  • First Online:
Zoonoses: Infections Affecting Humans and Animals

Abstract

Cryptosporidiosis usually manifests as gastrointestinal infection and is associated with considerable morbidity and, in some circumstances, mortality. Effective treatment that is suitable for all patients, including those that are particularly affected by infection, children and the immunocompromised, is lacking.

There are several species of Cryptosporidium, some of which are zoonotic. The most important of these zoonotic species is Cryptosporidium parvum, but others, including C. cuniculus (predominantly associated with rabbits), C. meleagridis (predominantly associated with poultry), and C. ubiquitum (predominantly associated with sheep and cervids), are also of public health importance. C. hominis is generally only infective to humans. Subtypes within species have also been identified, with varying host-specificities, and, in addition, some genotypes have been identified that may, potentially, be recognized as individual species as more information accumulates.

Cryptosporidium is particularly suited to waterborne transmission, but foodborne transmission has also occurred on multiple occasions and outbreaks have been documented. In this chapter various waterborne outbreaks are reviewed, particularly those associated with zoonotic transmission, and also Standard Methods for analyzing water and food samples for contamination with these parasites. Although most waterborne outbreaks of cryptosporidiosis are due to C. hominis (and are therefore not zoonotic), most foodborne outbreaks are apparently zoonotic. Zoonotic transmission also occurs when there is close contact between infected animals and humans, particularly veterinary students and young children on petting farms. Thus, cryptosporidiosis is an important zoonosis with the potential for causing community-wide outbreaks of disease due to both waterborne and foodborne transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agnamey P, Sarfati C, Pinel C et al (2011) Evaluation of four commercial rapid immunochromatographic assays for detection of Cryptosporidium antigens in stool samples: a blind multicenter trial. J Clin Microbiol 49(4):1605–1607

    Article  PubMed  PubMed Central  Google Scholar 

  • Anonymous (1990) Methods for the examination of waters and associated materials. Isolation and identification of Giardia Cysts, Cryptosporidium oocysts and free living pathogenic amoebae in water, etc. 1989. Department of Environment, Standing Committee of Analysts. H.M.S.O. Publication, London

    Google Scholar 

  • Anonymous (1997) Outbreaks of Escherichia coli 0157:H7 infection and cryptosporidiosis associated with drinking unpasteurized apple cider, Connecticut and New York, October 1996. Morb Mortal Wkly Rep MMWR 46:4–8

    Google Scholar 

  • Anonymous (2006) ISO 15553:2006 Water quality – isolation and identification of Cryptosporidium oocysts and Giardia cysts from water

    Google Scholar 

  • Anonymous (2016) ISO 18744:2016 Microbiology of the food chain – detection and enumeration of Cryptosporidium and Giardia in fresh leafy green vegetables and berry fruits

    Google Scholar 

  • Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks – an update 2004–2010. Water Res 45(20):6603–6614

    Article  CAS  PubMed  Google Scholar 

  • Beser J, Toresson L, Eitrem R et al (2015) Possible zoonotic transmission of Cryptosporidium felis in a household. Infect Ecol Epidemiol 5(1):28463

    PubMed  Google Scholar 

  • Blackburn BG, Mazurek JM, Hlavsa M et al (2006) Cryptosporidiosis associated with ozonated apple cider. Emerg Infect Dis 12:684–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouwknegt M, Devleesschauwer B, Graham H et al (2018) Prioritisation of food-borne parasites in Europe, 2016. Eur Secur 23(9):17–00161

    Google Scholar 

  • Bouzid M, Hunter PR, Chalmers R et al (2013) Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 26(1):115–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzid M, Kintz E, Hunter PR (2018) Risk factors for Cryptosporidium infection in low and middle income countries: a systematic review and meta-analysis. PLOS Neglect Trop Dis 12(6):e0006553

    Article  Google Scholar 

  • Bridgman SA, Robertson RMP, Syed Q et al (1995) Outbreak of cryptosporidiosis associated with a disinfected groundwater supply. Epidemiol Infect 115(3):555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budu-Amoako E, Greenwood SJ, Dixon BR et al (2012) Giardia and Cryptosporidium on dairy farms and the role these farms may play in contaminating water sources in Prince Edward Island, Canada. J Vet Intern Med 26(3):668–673

    Article  CAS  PubMed  Google Scholar 

  • Bujila I, Troell K, Fischerström K et al (2021) Cryptosporidium chipmunk genotype I–an emerging cause of human cryptosporidiosis in Sweden. Infect Genet Evol 92:104895

    Article  CAS  PubMed  Google Scholar 

  • Cama VA, Bern C, Sulaiman IM, Gilman RH et al (2003) Cryptosporidium species and genotypes in HIV-positive patients in Lima Peru. J Eukaryot Microbiol 50(Suppl):531–533

    Article  PubMed  Google Scholar 

  • Cama VA, Ross JM, Crawford S et al (2007) Differences in clinical manifestations among Cryptosporidium species and subtypes in HIV-infected persons. J Infect Dis 196:684–691

    Article  PubMed  Google Scholar 

  • Cama VA, Bern C, Roberts J et al (2008) Cryptosporidium species and subtypes and clinical manifestations in children Peru. Emerg Infect Dis 14:1567–1574

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter BL, Chalmers RM, Davies AP (2020) Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review. Parasit Vectors 13(1):1–14

    Article  Google Scholar 

  • Chalmers RM (2012) Waterborne outbreaks of cryptosporidiosis. Ann Ist Super Sanita 48(4):429–446

    Article  PubMed  Google Scholar 

  • Chalmers RM, Robinson G, Elwin K et al (2009) Cryptosporidium sp. rabbit genotype a newly identified human pathogen. Emerg Infect Dis 15(5):829–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmers RM, Elwin K, Hadfield SJ et al (2011) Sporadic human cryptosporidiosis caused by Cryptosporidium cuniculus, United Kingdom 2007–2008. Emerg Infect Dis 17(3):536–538

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalmers RM, Robertson LJ, Dorny P et al (2020) Parasite detection in food: current status and future needs for validation. Trends Food Sci Technol 99:337–350. https://doi.org/10.1016/j.tifs.2020.03.011

    Article  CAS  Google Scholar 

  • Chang’a JS, Robertson LJ, Mtambo MMA et al (2011) Unexpected results from large-scale cryptosporidiosis screening study in calves in Tanzania. Ann Trop Med Parasitol 105(7):515–521

    Article  Google Scholar 

  • Checkley W, White AC Jr, Jaganath D (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis 15(1):85–94

    Article  PubMed  Google Scholar 

  • Cieloszyk J, Goni P, Garcia A et al (2012) Two cases of zoonotic cryptosporidiosis in Spain by the unusual species Cryptosporidium ubiquitum and Cryptosporidium felis. Enferm Infecc Microbiol Clin 30:549–551

    Article  PubMed  Google Scholar 

  • Cinque K, Stevens MA, Haydon SR et al (2008) Investigating public health impacts of deer in a protected drinking water supply watershed. Water Sci Technol 58(1):127–132

    Article  CAS  PubMed  Google Scholar 

  • Collier SA, Smith S, Lowe A et al (2011) Cryptosporidiosis outbreak at a summer camp – North Carolina. Morb Mortal Wkly Rep MMWR 60:918–922

    Google Scholar 

  • Cook N, Paton CA, Wilkinson N et al (2006) Towards standard methods for the detection of Cryptosporidium parvum on lettuce and raspberries. Part 2: validation. Int J Food Microbiol 109(3):222–228

    Article  CAS  PubMed  Google Scholar 

  • Cruvinel LB, Ayres H, Zapa DMB et al (2020) Prevalence and risk factors for agents causing diarrhea (coronavirus, rotavirus, Cryptosporidium spp., Eimeria spp., and nematodes helminths) according to age in dairy calves from Brazil. Trop Anim Health 52(2):777–791

    Article  Google Scholar 

  • Duhain GLMC, Minnaar A, Buys EM (2012) Effect of chlorine, blanching, freezing, and microwave heating on Cryptosporidium parvum viability inoculated on green peppers. J of Food Protect 75(5):936–941

    Google Scholar 

  • EFSA Panel on Biological Hazards (BIOHAZ) (2018) Public health risks associated with food-borne parasites. EFSA J 16(12):e05495

    Article  Google Scholar 

  • Elwin K, Hadfield SJ, Robinson G et al (2012) The epidemiology of sporadic human infections with unusual cryptosporidia detected during routine typing in England and Wales 2000–2008. Epidemiol Infect 140:673–683

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2014) Multicriteria-based ranking for risk management of foodborne parasites. Report of a Joint FAO/WHO Expert Meeting, 3–7 September 2012 FAO Headquarters, Rome, Italy 2014

    Google Scholar 

  • Feltus DC, Giddings CW, Schneck BL et al (2006) Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J Clin Microbiol 44:4303–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajadhar AA, Allen JR (2004) Factors contributing to the public health and economic importance of waterborne zoonotic parasites. Vet Parasitol 126(1–2):3–14

    Article  PubMed  Google Scholar 

  • Garro CJ, Morici GE, Tomazic M et al (2021) Occurrence of Cryptosporidium and other enteropathogens and their association with diarrhea in dairy calves of Buenos Aires province, Argentina. Vet Parasitol Reg Stud Reports 24:100567

    PubMed  Google Scholar 

  • Gelletlie R, Stuart J, Soltanpoor N et al (1997) Cryptosporidiosis associated with school milk. Lancet 350:1005–1006

    Article  CAS  PubMed  Google Scholar 

  • Gormley FJ, Little CL, Chalmers RM et al (2011) Zoonotic cryptosporidiosis from petting farms, England and Wales, 1992–2009. Emerg Infect Dis 17:151–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Li N, Ryan U et al (2021) Small ruminants and zoonotic cryptosporidiosis. Parasitol Res:1–10. https://doi.org/10.1007/s00436-021-07116-9

  • Harper CM, Cowell NA, Adams BC et al (2002) Outbreak of Cryptosporidium linked to drinking unpasteurised milk. Commun Dis Intell 26:449–450

    Google Scholar 

  • Innes EA, Chalmers RM, Wells B et al (2020) A one health approach to tackle cryptosporidiosis. Trends Parasitol 36(3):290–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Jellison KL, Lynch AE, Ziemann JM (2009) Source tracking identifies deer and geese as vectors of human-infectious Cryptosporidium genotypes in an urban/suburban watershed. Environ Sci Technol 43(12):4267–4272

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Alderisio KA, Xiao L (2005) Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Appl Environ Microbiol 71:4446–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Roellig DM, Lebbad M et al (2020) Subtype distribution of zoonotic pathogen Cryptosporidium felis in humans and animals in several countries. Emerg Microb Infect 9(1):2446–2454

    Article  CAS  Google Scholar 

  • Johansen ØH, Abdissa A, Zangenberg M et al (2021) Performance and operational feasibility of two diagnostic tests for cryptosporidiosis in children (CRYPTO-POC): a clinical, prospective, diagnostic accuracy study. Lancet Infect Dis 21(5):722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Water Health 5(1):1–38

    Article  PubMed  Google Scholar 

  • Kaupke A, Kwit E, Chalmers RM et al (2014) An outbreak of massive mortality among farm rabbits associated with Cryptosporidium infection. Vet Res Sci 97(1):85–87

    Article  CAS  Google Scholar 

  • Keeley A, Faulkner BR (2008) Influence of land use and watershed characteristics on protozoa contamination in a potential drinking water resources reservoir. Water Res 42(10–11):2803–2813

    Article  CAS  PubMed  Google Scholar 

  • Khalil IA, Troeger C, Rao PC (2018) Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: a meta-analyses study. Lancet Glob Health 6(7):e758–e768

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotloff KL, Nataro JP, Blackwelder WC (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382(9888):209–222

    Article  PubMed  Google Scholar 

  • Kváč M, Hofmannová L, Hlásková L et al (2014) Cryptosporidium erinacei n. sp. (Apicomplexa: Cryptosporidiidae) in hedgehogs. Vet Parasitol 201(1–2):9–17

    Article  PubMed  Google Scholar 

  • Lal A, Hales S, French N et al (2012) Seasonality in human zoonotic enteric diseases: a systematic review. PLoS One 7(4):e31883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoni F, Amar C, Nichols G et al (2006) Genetic analysis of Cryptosporidium from 2414 humans with diarrhoea in England between 1985 and 2000. J Med Microbiol 55:703–707

    Article  CAS  PubMed  Google Scholar 

  • Li N, Xiao L, Alderisio K et al (2014) Subtyping Cryptosporidium ubiquitum, a zoonotic pathogen emerging in humans. Emerg Infect Dis 20(2):217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilja M, Widerström M, Lindh J (2018) Persisting post-infection symptoms 2 years after a large waterborne outbreak of Cryptosporidium hominis in northern Sweden. BMC Res Notes 11(1):1–5

    Article  Google Scholar 

  • Liu A, Ji H, Wang E et al (2011) Molecular identification and distribution of Cryptosporidium and Giardia duodenalis in raw urban wastewater in Harbin, China. Parasitol Res 109:913–918

    Article  PubMed  Google Scholar 

  • Luka G, Samiei E, Tasnim N et al (2021) Comprehensive review of conventional and state-of-the-art detection methods of Cryptosporidium. J Hazard Mater 421:126714

    Article  PubMed  Google Scholar 

  • Mac Kenzie WR, Hoxie NJ, Proctor ME et al (1994) A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N Engl J Med 331(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Macarisin D, Bauchan G, Fayer R (2010a) Spinacia oleracea L. leaf stomata harboring Cryptosporidium parvum oocysts: a potential threat to food safety. Appl Environ Microb 76(2):555–559

    Google Scholar 

  • Macarisin D, Santín M, Bauchan G, Fayer R (2010b) Infectivity of Cryptosporidium parvum oocysts after storage of experimentally contaminated apples. J Food Protect 73(10):1824–1829

    Google Scholar 

  • Mayer-Scholl A, Šoba Šparl B, Deksne G (2021) The IMPACT project: standardising molecular detection methods to improve risk assessment capacity for foodborne protozoan parasites, using Cryptosporidium in ready-to-eat salad as a model. Apicomplexan Parasites and One Health. http://www.apicowplexa.net/wp-content/uploads/2021/06/Abstracts-June-24-2021.pdf

  • McKerr C, Adak GK, Nichols G et al (2015) An outbreak of Cryptosporidium parvum across England & Scotland associated with consumption of fresh pre-cut salad leaves, May 2012. PLoS One 10(5):e0125955. https://doi.org/10.1371/journal.pone.0125955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard PS, Gensheimer KF, Addiss DG et al (1994) An outbreak of cryptosporidiosis from fresh-pressed apple cider. JAMA 272:1592–1596

    Article  CAS  PubMed  Google Scholar 

  • Nader JL, Mathers TC, Ward BJ et al (2019) Evolutionary genomics of anthroponosis in cryptosporidium. Nat Microbiol 4(5):826–836

    Article  CAS  PubMed  Google Scholar 

  • Nichols G (2008) Chapter 4: Epidemiology. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis. CRC Press, Boca Raton, pp 79–118

    Google Scholar 

  • Nichols RA, Connelly L, Sullivan CB et al (2010) Identification of Cryptosporidium species and genotypes in Scottish raw and drinking waters during a one-year monitoring period. Appl Environ Microbiol 76:5977–5986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nydam DV, Wade SE, Schaaf SL et al (2001) Number of Cryptosporidium parvum oocysts or giardia spp cysts shed by dairy calves after natural infection. Am J Vet Res 62(10):1612–1615

    Article  CAS  PubMed  Google Scholar 

  • Nydam DV, Lindergard G, Santucci F et al (2005) Risk of infection with Cryptosporidium parvum and Cryptosporidium hominis in dairy cattle in the New York City watershed. Am J Vet Res 66(3):413–417

    Article  CAS  PubMed  Google Scholar 

  • Ong CS, Eisler DL, Alikhani A et al (2002) Novel Cryptosporidium genotypes in sporadic cryptosporidiosis cases: first report of human infections with a cervine genotype. Emerg Infect Dis 8:263–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Rašková V, Květoňová D, Sak B et al (2013) Human cryptosporidiosis caused by Cryptosporidium tyzzeri and C. parvum isolates presumably transmitted from wild mice. J Clin Microbiol 51(1):360–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren X, Zhao J, Zhang L et al (2012) Cryptosporidium tyzzeri n. sp. (Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus). Exp Parasitol 130(3):274–281

    Article  PubMed  Google Scholar 

  • Robertson LJ (2009) Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination. Epidemiol Infect 137:913–921

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ, Chalmers RM (2013) Foodborne cryptosporidiosis: is there really more in Nordic countries? Trends Parasitol 29(1):3–9

    Article  PubMed  Google Scholar 

  • Robertson LJ, Fayer R (2012) Chapter 2: Cryptosporidium. In: Robertson LJ, Smith HV (eds) Foodborne protozoan parasites. Nova Publishers, New York, NY, USA, pp 33–64

    Google Scholar 

  • Robertson LJ, Björkman C, Axén C, Fayer R (2014) Chapter 4: Cryptosporidiosis in farmed animals. In: Cacciò S, Widmer G (eds) Cryptosporidium: parasite and disease. Springer

    Google Scholar 

  • Robertson LJ, Sehgal R, Goyal K (2015) An Indian multicriteria-based risk ranking of foodborne parasites. Food Res Int 77:315–319

    Article  Google Scholar 

  • Robertson LJ, Temesgen TT, Tysnes KR et al (2019) An apple a day: an outbreak of cryptosporidiosis in Norway associated with self-pressed apple juice. Epidemiol Infect 147:e139. https://doi.org/10.1017/S0950268819000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson LJ, Johansen ØH, Kifleyohannes T et al (2020) Cryptosporidium infections in Africa – how important is zoonotic transmission? A review of the evidence. Front Vet Sci 7:575881. https://doi.org/10.3389/fvets.2020.575881

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson G, Elwin K, Chalmers RM (2020) Cryptosporidium diagnostic assays: molecular detection. Methods Mol Biol 2052:11–22

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Fayer R, Xiao L (2014) Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141(13):1667–1685

    Article  PubMed  Google Scholar 

  • Ryan U, Paparini A, Monis P et al (2016) It’s official–Cryptosporidium is a gregarine: what are the implications for the water industry? Water Res 105:305–313

    Article  PubMed  Google Scholar 

  • Ryan U, Paparini A, Oskam C (2017) New technologies for detection of enteric parasites. Trends Parasitol 33(7):532–546

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Hijjawi N, Xiao L (2018) Foodborne cryptosporidiosis. Int J Parasitol 48(1):1–12

    Article  PubMed  Google Scholar 

  • Santín M, Trout JM (2008) Chapter 18: Livestock. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis. CRC Press, Boca Raton

    Google Scholar 

  • Shirley DA, Moonah SN, Kotloff KL (2012) Burden of disease from cryptosporidiosis. Curr Opin Infect Dis 25(5):555–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverlås C, Mattsson JG, Insulander M et al (2012) Zoonotic transmission of Cryptosporidium meleagridis on an organic Swedish farm. Int J Parasitol 42:963–967

    Article  PubMed  Google Scholar 

  • Smith HV, Patterson WJ, Hardie R et al (1989) An outbreak of waterborne cryptosporidiosis caused by post-treatment contamination. Epidemiol Infect 103(3):703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RP, Chalmers RM, Mueller-Doblies D et al (2010) Investigation of farms linked to human patients with cryptosporidiosis in England and Wales. Prev Vet Med 94:9–17

    Article  CAS  PubMed  Google Scholar 

  • Soba B, Petrovec M, Mioc V et al (2006) Molecular characterisation of Cryptosporidium isolates from humans in Slovenia. Clin Microbiol Infect 12:918–921

    Article  CAS  PubMed  Google Scholar 

  • Squire SA, Ryan U (2017) Cryptosporidium and Giardia in Africa: current and future challenges. Parasit Vectors 10(1):1–32

    Article  Google Scholar 

  • Sulaiman IM, Xiao L, Yang C et al (1998) Differentiating human from animal isolates of Cryptosporidium parvum. Emerg Infect Dis 4:681–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temesgen TT, Robertson LJ, Stigum VM et al (2021) Removal of parasite transmission stages from berries using washing procedures suitable for consumers. Foods 10(2):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trotz-Williams LA, Martin DS, Gatei W et al (2006) Genotype and subtype analyses of Cryptosporidium isolates from dairy calves and humans in Ontario. Parasitol Res 99:346–352

    Article  CAS  PubMed  Google Scholar 

  • Uga S, Matsuo J, Kono E et al (2000) Prevalence of Cryptosporidium parvum infection and pattern of oocyst shedding in calves in Japan. Vet Parasitol 94:27–32

    Article  CAS  PubMed  Google Scholar 

  • US EPA (1996) ICR microbial laboratory manual. EPA/600/R-95/178. Available at: http://www.epa.gov/microbes/documents/icrmicro.pdf

  • Van Dyke MI, Ong CS, Prystajecky NA et al (2012) Identifying host sources, human health risk and indicators of Cryptosporidium and Giardia in a Canadian watershed influenced by urban and rural activities. J Water Health 10:311–323

    Article  PubMed  Google Scholar 

  • Wang ZD, Liu Q, Liu HH et al (2018) Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: a global systematic review and meta-analysis. Parasit Vectors 11(1):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Widerström M, Schönning C, Lilja M et al (2014) Large outbreak of Cryptosporidium hominis infection transmitted through the public water supply, Sweden. Emerg Infect Dis 20(4):581

    Article  PubMed  PubMed Central  Google Scholar 

  • Widmer G, Carmena D, Kváč M et al (2020) Update on Cryptosporidium spp.: highlights from the seventh international Giardia and Cryptosporidium conference. Parasite 27:14. https://doi.org/10.1051/parasite/2020011

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124(1):80–89

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Cama VA (2018) Chapter 5: Cryptosporidium and cryptosporidiosis. In: Ortega Y, Sterling C (eds) Foodborne parasites. Springer, Cham

    Google Scholar 

  • Zahedi A, Ryan U (2020) Cryptosporidium–an update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 132:500–512. https://doi.org/10.1016/j.rvsc.2020.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy J. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Robertson, L.J., Woolsey, I. (2022). Waterborne and Foodborne Zoonoses. In: Sing, A. (eds) Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. https://doi.org/10.1007/978-3-030-85877-3_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85877-3_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85877-3

  • Online ISBN: 978-3-030-85877-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics