Skip to main content

Plasma Spray Torches

  • Reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

Plasma spraying belongs to a wide range of thermal spray processes in which finely divided metallic or nonmetallic materials are deposited on the substrate in a molten or semi-molten condition to form a coating. The coating material may be in the form of powder, ceramic rod, or wire which is introduced into the plasma jet, melted, and projected toward the surface of the substrate forming a coating of thickness that can vary between a few microns to several millimeters. The rapid development and acceptance of the technology as a reliable material processing technique is based on a solid understanding of the fundamental processes involved. According to (Fauchais et al. 2014), the motivation for coating structural parts can be summarized by the following needs:

  • Decouple surface properties from the bulk properties of the materials by modifying their surface properties such as tribological, wear, and corrosion resistance

  • Improve functional performance of the materials by, e.g., allowing higher temperature exposure using thermal barrier coatings

  • Improve component life by reducing wear due to abrasion, erosion, and corrosion

  • Recycling of worn parts through rebuilding them to their original dimensions avoiding the need for replacing the entire component

  • Improved economics using low-cost bulk materials combined with high functionality coatings

Emil Pfender: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APS:

Atmospheric plasma spraying

CAPS:

Controlled atmosphere plasma spraying

CARS:

Coherent anti-Stokes Raman spectroscopy

CBL:

Cold boundary layer

CGDS:

Cold gas dynamic spraying

CNTs:

Carbon nanotubes

CS:

Cold Spray

DC:

Direct current

D-gun:

Detonation gun

EBCs:

Environmental barrier coatings

EB-PVD:

Electron beam-physical vapor deposition

ERW:

Electric Resistance Welding

FS:

Flame spraying

HVOF:

High-velocity oxy-fuel flame

i.d.:

Internal diameter

ISPC:

International Symposium on Plasma Chemistry

ITSC:

International Thermal Spray Conference

LIF:

Laser-induced fluorescence

LPG:

Liquefied petroleum gas

LPPS:

Low-pressure plasma spraying

NTSC:

National Thermal Spray Conference

PS-PVD:

Plasma spraying-physical vapor deposition

PTA:

Plasma Transferred Arc

RF:

Radio frequency

SHS:

Self-propagating high-temperature synthesis

SOFCs:

Solid oxide fuel cells

SWAS:

Single-wire arc spraying

TBCs:

Thermal barrier coatings

TGO:

Thermally grown oxide

UTSC:

United Thermal Spray Conference

VPS:

Vacuum plasma spraying

WPS:

Water plasma spraying

YSZ:

Yttria-stabilized zirconia

References

  • Barbezat G (2001) The internal plasma spraying on powerful technology for the aerospace and automotive industries. In: Berndt CC, Khor KA, Lugscheider EF (eds) Proceedings of ITSC, Singapore. ASM International, Materials Park, pp 135–140

    Google Scholar 

  • Barbezat G (2006) Application of thermal spraying in the automobile industry. Surf Coat Technol 201:2028–2031

    Article  Google Scholar 

  • Barbezat G, Landes K (2000) Plasma technology TRIPLEX for the deposition of ceramic coatings in the industry. In: Berndt CC (ed) Proceedings of 1st ITSC, Montreal, Canada. ASM International, Materials Park, pp 881–885

    Google Scholar 

  • Burgess A (2002) Hastelloy C-276 parameter study using the axial III plasma spray system. In: Lugsheider E (ed) Proceedings of ITSC-2002, Essen, Germany. ASM International, Materials Park, pp 516–518

    Google Scholar 

  • Chandra S, Fauchais PL (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18:148–180

    Article  Google Scholar 

  • Coudert JF, Planche MP, Fauchais P (1995) Velocity measurement of D.C. plasma based on arc root fluctuations. Plasma Chem Plasma Process 15(1):47–70

    Article  Google Scholar 

  • Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International Materials Park, Cleveland, OH, USA

    Google Scholar 

  • Ducos M, Durand JP (2001) Thermal coatings in Europe, a business perspective. In: Berndt CC, Khor KH, Lugsheider E (eds) Thermal spray 2001. ASM International Materials Park, pp 1267–1276

    Google Scholar 

  • Espanol M, Guipont V, Khor KA, Jeandin M, Llorca Isern N (2002) Effect of heat treatment on high pressure plasma sprayed hydroxyapatite coatings. Surf Eng 18(3):213–218

    Article  Google Scholar 

  • Fauchais PL (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108

    Article  Google Scholar 

  • Fauchais P, Heberlein J, Boulos M (2014) Thermal spray fundamentals, from powder to part. Springer, New York. 1550 pages

    Book  Google Scholar 

  • Fauchais P, Vardelle M, Goutier S (2016) Latest researches advances of plasma spraying; from splat to coating. J Therm Spray Technol 25:1534–1553

    Article  Google Scholar 

  • Fincke J, Swank WD, Haggard DC (1993) Atmospheric plasma spraying of WC:Co. In: Harry J (ed) Proceedings of ISPC, University of Loughborough, Loughborough, UK. pp 145–149

    Google Scholar 

  • Freslon A (1995) Plasma spraying at a controlled temperature and atmosphere. In: Berndt CC, Sampath S (eds) Proceedings of NTSC-1995, Houston, TX. ASM International, Materials Park, pp 57–63

    Google Scholar 

  • Fukanuma H (1988) Japanese Patent 230,300 JP. 24 Apr 1988

    Google Scholar 

  • Gerdien H, Lotz A (1922) Wiss Veröff Siemens-Konz. 489–4

    Google Scholar 

  • Goutier S, Vardelle M, Labbe JC, Fauchais P (2011) Flattening and cooling of millimeter- and micrometer-sized alumina drops. J Therm Spray Technol 20:59–67

    Article  Google Scholar 

  • Goutier S, Vardelle M, Fauchais P (2013) Comparison between metallic and ceramic splats: influence of viscosity and kinetic energy on the particle flattening, surf. Coat Technol 657–668

    Google Scholar 

  • Guipont V, Espanol M, Borit F, Llorca-Isern N, Jeandin M, Khor KA, Cheang P (2002) High-pressure plasma spraying of hydroxyapatite powders. Mater Sci Eng A 325(1–2):9–18

    Article  Google Scholar 

  • Guipont V, Bansard S, Jeandin M, Khor KA, Nivard M, Berthe L, Cuq-Lelandais JP, Boustie M (2010) Bond strength determination of hydroxyapatite coatings on Ti-6Al-4V substrates using the LAser Shock Adhesion Test (LASAT). J Biomed Mater Res A 95A(4):1096–1104

    Article  Google Scholar 

  • Harabovsky M (2002) Generation of thermal plasmas in liquid and hybrid DC arc torches. Pure Appl Chem 74(3):429–433

    Article  Google Scholar 

  • Harabovsky M, Kopecky V, Sember V (1995) Water stabilized arc as a source of thermal plasma. In: Fauchais P (ed) Proceedings of international symposium heat and mass transfer under plasma conditions, Cesme, Turkey. Begell House, New York, pp 91–98

    Google Scholar 

  • Harabovsky M, Konrad M, Kopecky V, Semùber V (1997) Processes and properties of electric arc stabilized by water vortex. IEEE Trans Plasma Sci 25(5):833–839

    Article  Google Scholar 

  • Henne R, Mayr W, Reusch A (1993) Influence of nozzle geometry on particle behavior and coating quality in high velocity VPS. In: Proceedings of ITSC TS93, Aachen, Germany. DVS, Germany, pp 7–11

    Google Scholar 

  • Henne R, Bouyer E, Borck V, Schiller G (2001) Influence of anode nozzle and external torch contour on the quality of the atmospheric DC plasma spray process. In: Berndt CC, Khor KA, Lugsheider E (eds) Proceedings of ITSC-2001, Singapore. ASM International, Materials Park, pp 471–478

    Google Scholar 

  • Huang PC, Heberlein J, Pfender E (1995) A two-fluid model of turbulence for a thermal plasma jet. Plasma Chem Plasma Process 15(1):25–46

    Article  Google Scholar 

  • Itoh A, Takeda K, Itoh M, Koga M (1990) Pretreatments of substrates by using reversed transferred arc in low pressure plasma spray. In: Bernecki T (ed) Thermal spray research and application. ASM International, Materials Park, pp 245–252

    Google Scholar 

  • Jäger DA, Stöver D, Schlump W (1992) High pressure plasma spraying in controlled atmosphere up to 2 bars. In: Berndt CC (ed) Proceedings of ITSC-1992., Orlando, FL. ASM International, Material Park, pp 69–74

    Google Scholar 

  • Lang M, Henne R, Schaper S, Schiller G (2001) Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells. J Therm Spray Technol 10(4):618–625

    Article  Google Scholar 

  • Leblanc L, Moreau C (2002) The long-term stability of plasma spraying. J Therm Spray Technol 11:380–386

    Article  Google Scholar 

  • Ma X-Q, Borit F, Guipont V, Jeandin M (2002) Thin alumina coating deposition by using controlled atmosphere plasma spray system. J Adv Mater 34(4):52–57

    Google Scholar 

  • Marantz DR, Herman H (1992) Plasma spray gun and method of use. US Patent 5,144,110

    Google Scholar 

  • Marantz DR, Kowalsky KA, Marantz D (1991) Wire-arc-plasma spray process basic principles and its versatility. In: Bernecki TF (ed) Proceedings of the fourth NTSC, Pittsburgh, Pennsylvania. ASM International, Materials Park, pp 381–387

    Google Scholar 

  • Marqués J-L, Forster G, Schein J (2009) Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasma Phys J 2:89–98

    Article  Google Scholar 

  • Mauer G, Vaßen R, Stöver D, Kirner S, Marqués JL, Zimmermann S, Forster G, Schein J (2011a) Improving power injection in plasma spraying by optical diagnostics of the plasma and particle characterization. J Therm Spray Technol 20(1–2):3–11

    Article  Google Scholar 

  • Mauer G, Vaßen R, Stöver D (2011b) Plasma and particle temperature measurements in thermal spray: approaches and applications. J Therm Spray Technol 20(3):391–406

    Article  Google Scholar 

  • Mayr W, Henne R (1988) Investigation of a VPS burner with Laval nozzel using an automated laser doppler measuring system. In: Eschnauer H, Huber P, Nicoll AR, Sandmeier S (eds) Proceedings of 1st plasma-technik symposium, Lucerne, Switzerland. Plasma Technik, Wohlen, pp 87–97

    Google Scholar 

  • Meyer PJ, Hawley D (1991) LPPS production systems. In: Bernecki TF (ed) Proceedings of 4th NTSC-1991., Pittsburgh, PA. ASM International, Materials Park, pp 29–38

    Google Scholar 

  • Moreau C, Gougeon P, Burgess A, Ross D (1995) Characterization of particle flows in an axial injection plasma torch. In: Berndt CC, Sampath S (eds) Proceedings of 8th NTSC-1995, Houston, Texas. ASM International, Materials Park, pp 141–147

    Google Scholar 

  • Morishita T (1991) Coatings by 250 kW plasma jet spray system. In: Blum-Sandmeier S, Eschnauer H, Huber P, Nicoll A (eds) Proceedings of 2nd Plasma Technik symposium, Luzern, Switzerland. Plasma Technik, Wohlen, pp 137–145

    Google Scholar 

  • Muehlberger E (1988) Industrial plasma processing technology. In: Eschnauer H, Huber P, Nicoll AR, Sondermeier S (eds) Proceedings of 1st Plasma-Technik Symposium, Lucerne, Switzerland. Plasma-Technik AG, Wohlen, pp 105–118

    Google Scholar 

  • Muehlberger E, Muehlberger SE, Sickinger A et al (1994) Modular segmented cathode plasma generator. US Patent 5,298,835

    Google Scholar 

  • Nicoll AR (1994) Production plasma spraying in automotive industry: a European viewpoint. In: Berndt CC, Sampath S (eds) Thermal spray industrial applications, proceedings of the 7th NTSC-1994. ASM International, Materials Park. 7

    Google Scholar 

  • Nogues E, Vardelle M, Fauchais P, Granger P (2008) Arc voltage fluctuations: comparison between two plasma torch types. Surf Coat Technol 202:4387–4393

    Article  Google Scholar 

  • Oberste Berghaus J, Marple B, Moreau C (2006) Suspension plasma spraying of nanostructured WC-12Co coatings. J Therm Spray Technol 15(4):676–681

    Article  Google Scholar 

  • Pateyron B, Elchinger MF, Delluc G, Fauchais P (1996) Sound velocity in different reacting thermal plasma systems. Plasma Chem Plasma Process 16(1):39–57

    Google Scholar 

  • Pershin L, Mitrasinovic A, Mostaghimi J (2013) Treatment of refractory powders by a novel, high enthalpy dc plasma. J Phys D Appl Phys 46:224019

    Article  Google Scholar 

  • Pfender E (1989) Multiple arc plasma device with continuous gas jet. US patent 4,818,837

    Google Scholar 

  • Pfender E, Fink J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543

    Article  Google Scholar 

  • Rahmane M, Soucy G, Boulos M, Henne R (1998) Fluid dynamic study of direct current plasma jets for plasma spraying applications. J Therm Spray Technol 7(3):349–356

    Article  Google Scholar 

  • Roumilhac P, Coudert J-F, Fauchais P (1990a) Designing parameters of spraying plasma torches. In: Bernecki T (ed) Proceedings of NTSC-1990., Long Beach, CA. ASM International Materials Park, pp 11–19

    Google Scholar 

  • Roumilhac P, Coudert J-F, Fauchais P (1990b) Influence of the arc chamber design and the surrounding atmosphere on the characteristics and temperature distribution of Ar-H2 and Ar-He spraying plasma jets. In: Apelian D, Szekely J (eds) Plasma processing and synthesis of materials, vol 190. MRS, Pittsburgh, pp 227–333

    Google Scholar 

  • Roumilhac P, Fauchais P, Ducos M (1991) Optical and thermal diagnostics regarding the working conditions of a plasma mini-spray torch. In: First Plasma Technik symposium, vol 1. Plasma Technik, Wohlen, pp 121–131

    Google Scholar 

  • Russ S, Strykowski PJ, Pfender E (1994a) Mixing in plasma and low-density jets. Exp Fluids 16:297–307

    Google Scholar 

  • Russ S, Pfender E, Strykowski PJ (1994b) Unsteadiness and mixing in thermal plasma jets. Plasma Chem Plasma Process 14(4):425–436

    Google Scholar 

  • Schwenk A, Gruner H, Zimmermann X, Landes K, Nutsch G (2004) Improved nozzle design of de-Laval-type nozzles of the atmospheric plasma spraying. In: Ohmori A (ed) Proceedings of ITSC-2004, Osaka, Japan. ASM International, Materials Park, pp 600–605

    Google Scholar 

  • Schwenk A, Grund T, Wielage B, Zierhut J, Dzulko M, Landes K (2007) Delta gun–an improved multiple electrode plasma system. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings of ITSC-2007 Beijing. ASM International, Materials Park

    Google Scholar 

  • Suzuki M, Shahien M, Tsutai Y (2014) Suspension plasma spray by twin cathode type plasma spray gun, 6th int. In: Meillot E (ed) Workshop on suspension and solution thermal spraying, CEA Le Ripault (37) France

    Google Scholar 

  • Tucker RC Jr (2013) Thermal spray technology, vol 5A. ASM International, Materials Park

    Book  Google Scholar 

  • Vardelle A, Vardelle M, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) Controlling particle injection in plasma spraying. J Therm Spray Technol 10:267–289

    Article  Google Scholar 

  • Yushchenko K, Borisov Y, Pereverzev Y, Vojnarovitch S, Darmochval V, Vovric V, Ramaekers P, Raa G (1998) Microplasma spraying. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century, proceedings of 15th, ITSC-1998, vol 2. ASM International, Materials Park, pp 1461–1467

    Google Scholar 

  • Zhukov MF (ed) (1977) Electric arc plasmatrons. The USSR Academy of Science, Siberian Chapter, Institute of Thermal Physics, Novosibirsk/USSR

    Google Scholar 

  • Zierhut J, Haslbeck P, Landes KD, Barbezat G, Muller M, Schutz M (1998) TRIPLEX - an innovative three-cathode plasma torch. In: Coddet C (ed) Proceedings of ITSC-1998, Nice, France. ASM International, Materials Park, pp 1374–1380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2023). Plasma Spray Torches. In: Boulos, M.I., Fauchais, P.L., Pfender, E. (eds) Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-030-84936-8_49

Download citation

Publish with us

Policies and ethics