Skip to main content

Biodegradable Polymers Challenges

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

After their intended use, the natural breakdown of synthetic polymeric materials into byproducts has always been regarded as a foremost challenge in recent years from the biodegradation perspective. The current chapter presents a comprehensive overview of the biodegradable polymeric materials that are now considered an alternative to synthetic non-biodegradable materials in terms of their waste management advantages for building an ultimate pollution-free environment. The major benefits of biodegradable polymers are that they can be composted with organic wastes and returned to the environment to enrich the soil, which will not only reduce injuries to wild animals caused by the dumping of conventional polymeric wastes but will also lessen the labor cost for the removal of such wastes in the environment. As they are degraded naturally, their decomposition will help increase the longevity and stability of landfills by reducing the volume of garbage. Recently, tremendous interest has been reported in the academic literature to develop such biodegradable polymers for various applications. Owing to their diverse market value and applications, the biodegradable polymers represent a dynamically growing research field, and organizing the documented academic case studies associated with this research domain is the need of an hour. The future of these materials also seems promising with their potentially significant contribution to the biomedical industry, drug/gene delivery, nanotechnology, agriculture, and an exceptional role in waste management to help protect the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BPA:

Bisphenol-A

CC BY:

Creative Commons Attribution

DRS:

Deposit Refund Scheme

EPR:

Extended producer responsibility

LDPE:

Low-density polyethylene

P3HB:

Poly-3-hydroxybutyrate

PA:

Polyamide

PBAT:

Poly(butylene adipate-co-terephthalate)

PBS:

Poly(butylene succinate)

PCs:

Polycarbonates

PCL:

Polycaprolactone

PE:

Polyethylene

PEF:

Polyethylene furanoate

PET:

Polyethylene terephthalate

PHAs:

Polyhydroxyalkanoates

PLA:

Polylactic acid/polylactide

PP:

Polypropylene

PPC:

Polypropylene carbonate

PS:

Polystyrene

PTT:

Polytrimethylene terephthalate

PVC:

Polyvinyl chloride

TPS:

Thermoplastic starch

References

  1. Namazi H (2017) Polymers in our daily life. BioImpacts: BI 7(2):73

    Google Scholar 

  2. Alhanish A and Ali GAM, Recent Developments in Wastewater Treatment Using Polymer/Clay Nanocomposites, in Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, AE Shalan, AS Hamdy Makhlouf, S Lanceros-Méndez, Editors. 2022, Springer International Publishing: Cham. p. 419–451.

    Google Scholar 

  3. Mahmoodi Z, Abhari AR, Lalehloo RS, Bakr ZH, and Ali GAM (2022) Thermodynamic Studies on the Adsorption of Organophosphate Pesticides (Diazinon) onto ZnO/Polyethersulfone Nanocomposites. ChemistrySelect 7(2):e202103619

    Article  CAS  Google Scholar 

  4. Thalji MR, Ibrahim AA, and Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  5. Agarwal S, Sadegh H, Monajjemi Majid, Makhlouf ASH, Ali GAM, Memar AOH, Shahryari-ghoshekandi R, Tyagi I, and Gupta VK (2016) Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. Journal of Molecular Liquids 218:191–197

    Article  CAS  Google Scholar 

  6. Chandra R and Rustgi R (1998) Biodegradable polymers. Progress in polymer science 23(7):1273–1335

    Article  CAS  Google Scholar 

  7. Essa WK, Yasin SA, Abdullah AH, Thalji MR, Saeed IA, Assiri MA, Chong KF, and Ali GAM (2022) Taguchi L25 (54) Approach for Methylene Blue Removal by Polyethylene Terephthalate Nanofiber-Multi-Walled Carbon Nanotube Composite. Water 14(8):1242

    Article  CAS  Google Scholar 

  8. Rai P, Mehrotra S, Priya S, Gnansounou E, and Sharma SK (2021) Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource technology 325:124739

    Article  CAS  Google Scholar 

  9. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, and Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 23(4):383–395

    Article  Google Scholar 

  10. Panchal SS and Vasava DV (2020) Biodegradable polymeric materials: synthetic approach. ACS omega 5(9):4370–4379

    Article  CAS  Google Scholar 

  11. Wu F, Misra M, and Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Progress in Polymer Science 117:101395

    Article  CAS  Google Scholar 

  12. Yin G-Z and Yang X-M (2020) Biodegradable polymers: a cure for the planet, but a long way to go. Journal of Polymer Research 27(2):1–14

    Article  Google Scholar 

  13. RameshKumar S, Shaiju P, and O'Connor KE (2020) Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry 21:75–81

    Article  Google Scholar 

  14. Moustafa H, Youssef AM, Darwish NA, and Abou-Kandil AI (2019) Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering 172:16–25

    Article  CAS  Google Scholar 

  15. Shukla S, Shukla SK, Govender PP, and Giri N (2016) Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC advances 6(97):94325–94351

    Article  CAS  Google Scholar 

  16. A Jadhav S (2014) Interesting nanoshapes by “nano artwork”. Advanced Materials Letters 5(10):557–561

    Google Scholar 

  17. Amnieh SK, Mashayekhi M, Shahnooshi E, Tavafoghi M, and Mosaddegh P (2021) Biodegradable performance of PLA stents affected by geometrical parameters: The risk of fracture and fragment separation. Journal of Biomechanics 122:110489

    Article  Google Scholar 

  18. Klein S, Dimzon IK, Eubeler J, and Knepper TP, Analysis, occurrence, and degradation of microplastics in the aqueous environment, in Freshwater microplastics. 2018, Springer, Cham. p. 51–67.

    Chapter  Google Scholar 

  19. Moore JE, Soares JS, and Rajagopal KR (2010) Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovascular Engineering and Technology 1(1):52–65

    Article  Google Scholar 

  20. Jiang T, Duan Q, Zhu J, Liu H, and Yu L (2020) Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research 3(1):8–18

    Article  Google Scholar 

  21. Yu L, Petinakis E, Dean K, Liu H, and Yuan Q (2011) Enhancing compatibilizer function by controlled distribution in hydrophobic polylactic acid/hydrophilic starch blends. Journal of Applied Polymer Science 119(4):2189–2195

    Article  CAS  Google Scholar 

  22. Xie F, Yu L, Liu H, and Dean K (2006) Effect of compatibilizer distribution on thermal and rheological properties of gelatinized starch/biodegradable polyesters blends. International Polymer Processing 21(4):379–385

    Article  CAS  Google Scholar 

  23. Kader M, Senge M, Mojid M, and Ito K (2017) Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research 168:155–166

    Article  Google Scholar 

  24. Makhlouf ASH and Ali GAM, Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. 2021, Springer: Springer.

    Google Scholar 

  25. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701–727.

    Chapter  Google Scholar 

  26. Ali GAM and Makhlouf ASH, Fundamentals of Waste Recycling for Nanomaterial Manufacturing, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 3–24.

    Google Scholar 

  27. Soliman FS, El-Maghrabi HH, Ali GAM, Kammoun MA, and Nada AA, Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 823–850.

    Chapter  Google Scholar 

  28. Filipović V, Bristow KL, Filipović L, Wang Y, Sintim HY, Flury M, and Šimůnek Ji, Sprayable biodegradable polymer membrane technology for cropping systems: Challenges and opportunities. 2020, ACS Publications.

    Google Scholar 

  29. Shit SC and Shah PM (2014) Edible polymers: challenges and opportunities. Journal of Polymers 2014

    Google Scholar 

  30. Nair LS and Laurencin CT (2007) Biodegradable polymers as biomaterials. Progress in polymer science 32(8–9):762–798

    Article  CAS  Google Scholar 

  31. Santacruz-Juárez E, Buendia-Corona RE, Ramírez RE, and Sánchez C (2021) Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. Journal of Hazardous Materials 411:125118

    Article  Google Scholar 

  32. Bouteh E, Ahmadi N, Abbasi M, Torabian A, van Loosdrecht MC, and Ducoste J (2021) Biodegradation of organophosphorus pesticides in moving bed biofilm reactors: Analysis of microbial community and biodegradation pathways. Journal of Hazardous Materials 408:124950

    Article  CAS  Google Scholar 

  33. Leja K and Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies 19(2)

    Google Scholar 

  34. Wang J, Hlaing TS, Nwe MT, Aung MM, Ren C, Wu W, and Yan Y (2021) Primary biodegradation and mineralization of aryl organophosphate flame retardants by Rhodococcus-Sphingopyxis consortium. Journal of Hazardous Materials 412:125238

    Article  CAS  Google Scholar 

  35. Hou Z, Chen S, Li Z, Chen Z, Hu J, Guo J, Li P, and Yang L (2021) Controllable Degradation of Poly (trimethylene carbonate) via Self-blending with Different Molecular Weights. Polymer Degradation and Stability 189:109596

    Article  CAS  Google Scholar 

  36. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, and Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research 25:7287–7298

    Article  CAS  Google Scholar 

  37. Pathak VM and Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing 4:15

    Google Scholar 

  38. Thiagamani SMK, Krishnasamy S, and Siengchin S (2019) Challenges of biodegradable polymers: An environmental perspective. Applied Science and Engineering Progress 12(3):149–149

    Google Scholar 

  39. Agarwal S (2020) Biodegradable Polymers: Present Opportunities and Challenges in Providing a Microplastic-Free Environment. Macromolecular Chemistry and Physics 221(6):2000017

    Article  CAS  Google Scholar 

  40. Rahman MH and Bhoi PR (2021) An overview of non-biodegradable bioplastics. Journal of cleaner production 294:126218

    Article  CAS  Google Scholar 

  41. Prajapati SK, Jain A, Jain A, and Jain S (2019) Biodegradable polymers and constructs: A novel approach in drug delivery. European polymer journal 120:109191

    Article  CAS  Google Scholar 

  42. Scaffaro R, Maio A, Sutera F, Gulino EF, and Morreale M (2019) Degradation and recycling of films based on biodegradable polymers: A short review. Polymers 11(4):651

    Article  CAS  Google Scholar 

  43. Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, and Gałęski A (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Progress in Polymer Science 87:197–227

    Article  CAS  Google Scholar 

  44. Bioplastics E (2021) European Bioplastics Market Update-2021. Available Online: https://docs.european-bioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2021_short_version.pdf (accessed on April 22, 2022).

  45. Tan D, Wang Y, Tong Y, and Chen G-Q (2021) Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends in Biotechnology 39(9):953–963

    Article  CAS  Google Scholar 

  46. Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y, Zabed HM, and Qi X (2020) Recent developments in Polyhydroxyalkanoates (PHAs) production–a review. Bioresource technology 306:123132

    Article  CAS  Google Scholar 

  47. Mannina G, Presti D, Montiel-Jarillo G, Carrera J, and Suárez-Ojeda ME (2020) Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource technology 297:122478

    Article  CAS  Google Scholar 

  48. Bhatia SK, Otari SV, Jeon J-M, Gurav R, Choi Y-K, Bhatia RK, Pugazhendhi A, Kumar V, Banu JR, and Yoon J-J (2021) Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresource Technology 326:124733

    Article  CAS  Google Scholar 

  49. Tripathi AD, Mishra PK, Darani KK, Agarwal A, and Paul V (2022) Hydrothermal treatment of lignocellulose waste for the production of polyhydroxyalkanoates copolymer with potential application in food packaging. Trends in Food Science & Technology 123:233–250

    Article  CAS  Google Scholar 

  50. Mlalila N, Hilonga A, Swai H, Devlieghere F, and Ragaert P (2018) Antimicrobial packaging based on starch, poly (3-hydroxybutyrate) and poly (lactic-co-glycolide) materials and application challenges. Trends in Food Science & Technology 74:1–11

    Article  CAS  Google Scholar 

  51. Surendran A, Lakshmanan M, Chee JY, Sulaiman AM, Thuoc DV, and Sudesh K (2020) Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils? Frontiers in Bioengineering and Biotechnology 8:169

    Article  Google Scholar 

  52. Kachrimanidou V, Kopsahelis N, Webb C, and Koutinas AA, Bioenergy technology and food industry waste valorization for integrated production of polyhydroxyalkanoates, in Bioenergy Research: Advances and Applications. 2014, Elsevier. p. 419–433.

    Chapter  Google Scholar 

  53. Rivera-Briso AL and Serrano-Aroca Á (2018) Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement strategies for advanced applications. Polymers 10(7):732

    Article  Google Scholar 

  54. Seggiani M, Cinelli P, Balestri E, Mallegni N, Stefanelli E, Rossi A, Lardicci C, and Lazzeri A (2018) Novel sustainable composites based on poly (hydroxybutyrate-co-hydroxyvalerate) and seagrass beach-CAST fibers: Performance and degradability in marine environments. Materials 11(5):772

    Article  Google Scholar 

  55. Pettinelli N, Rodríguez-Llamazares S, Farrag Y, Bouza R, Barral L, Feijoo-Bandín S, and Lago F (2020) Poly (hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. International Journal of Biological Macromolecules 146:110–118

    Article  CAS  Google Scholar 

  56. Policastro G, Panico A, and Fabbricino M (2021) Improving biological production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) co-polymer: a critical review. Reviews in Environmental Science and Bio/Technology 20(2):479–513

    Article  CAS  Google Scholar 

  57. Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi M, and Lee CH (2021) A review on properties and application of bio-based poly (butylene succinate). Polymers 13(9):1436

    Article  CAS  Google Scholar 

  58. Mazhandu ZS, Muzenda E, Mamvura TA, Belaid M, and Nhubu T (2020) Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: challenges and opportunities. Sustainability 12(20):8360

    Article  CAS  Google Scholar 

  59. Platnieks O, Gaidukovs S, Thakur VK, Barkane A, and Beluns S (2021) Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. European Polymer Journal 161:110855

    Article  CAS  Google Scholar 

  60. Nazrin A, Sapuan S, Zuhri M, Ilyas R, Syafiq R, and Sherwani S (2020) Nanocellulose reinforced thermoplastic starch (TPS), polylactic acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Frontiers in chemistry 8:213

    Article  CAS  Google Scholar 

  61. Yin D, Mi J, Zhou H, Wang X, and Tian H (2020) Fabrication of branching poly (butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation. Carbohydrate Polymers 247:116708

    Article  CAS  Google Scholar 

  62. Xu Y, Zhang S, Peng X, and Wang J (2018) Fabrication and mechanism of poly (butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature. European Polymer Journal 99:250–258

    Article  CAS  Google Scholar 

  63. Han Q, Zhao L, Lin P, Zhu Z, Nie K, Yang F, and Wang L (2020) Poly (butylene succinate) biocomposite modified by amino functionalized ramie fiber fabric towards exceptional mechanical performance and biodegradability. Reactive and Functional Polymers 146:104443

    Article  CAS  Google Scholar 

  64. Jeremic S, Milovanovic J, Mojicevic M, Bogojevic SS, and Nikodinovic-Runic J (2020) Understanding bioplastic materials–Current state and trends. Journal of the Serbian Chemical Society 85(12):1507–1538–1507–1538

    Article  Google Scholar 

  65. Su S, Kopitzky R, Tolga S, and Kabasci S (2019) Polylactide (PLA) and its blends with poly (butylene succinate)(PBS): A brief review. Polymers 11(7):1193

    Article  Google Scholar 

  66. Tolga S, Kabasci S, and Duhme M (2020) Progress of disintegration of polylactide (PLA)/poly (butylene succinate)(PBS) blends containing talc and chalk inorganic fillers under industrial composting conditions. Polymers 13(1):10

    Article  Google Scholar 

  67. Van den Oever M, Molenveld K, van der Zee M, and Bos H, Bio-based and biodegradable plastics: facts and figures: focus on food packaging in the Netherlands. 2017: Wageningen Food & Biobased Research.

    Google Scholar 

  68. Łopusiewicz Ł, Zdanowicz M, Macieja S, Kowalczyk K, and Bartkowiak A (2021) Development and Characterization of Bioactive Poly(butylene-succinate) Films Modified with Quercetin for Food Packaging Applications. Polymers 13:1798

    Article  Google Scholar 

  69. Siakeng R, Jawaid M, Ariffin H, Sapuan S, Asim M, and Saba N (2019) Natural fiber reinforced polylactic acid composites: A review. Polymer Composites 40(2):446–463

    Article  CAS  Google Scholar 

  70. Aung SPS, Shein HHH, Aye KN, and Nwe N, Environment-friendly biopolymers for food packaging: starch, protein, and poly-lactic acid (PLA), in Bio-based Materials for Food Packaging. 2018, Springer. p. 173–195.

    Chapter  Google Scholar 

  71. Naser AZ, Deiab I, and Darras BM (2021) Poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Advances 11(28):17151–17196

    Article  CAS  Google Scholar 

  72. Coltelli M-B, Gigante V, Vannozzi A, Aliotta L, Danti S, Neri S, Gagliardini A, Morganti P, Panariello L, and Lazzeri A (2019) Poly (lactic) acid (PLA) based nano-structured functional films for personal care applications. Proceedings of the AUTEX

    Google Scholar 

  73. Abdelrazek S, Abou Taleb E, Mahmoud AS, and Hamouda T (2021) Utilization of Polylactic Acid (PLA) in Textile Food Packaging: A Review. Egyptian Journal of Chemistry

    Google Scholar 

  74. Xiaoming Z, Cheng R, Wang B, Zeng J, Xu J, Li J, Kang L, Cheng Z, Gao W, and Chen K (2021) Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydrate polymers 251:117117

    Article  Google Scholar 

  75. Chen X, Kroell N, Li K, Feil A, and Pretz T (2021) Influences of bioplastic polylactic acid on near-infrared-based sorting of conventional plastic. Waste Management & Research 39(9):1210–1213

    Article  CAS  Google Scholar 

  76. Gioia C, Giacobazzi G, Vannini M, Totaro G, Sisti L, Colonna M, Marchese P, and Celli A (2021) End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem 14(19):4167–4175

    Article  CAS  Google Scholar 

  77. Djukić-Vuković A, Mladenović D, Ivanović J, Pejin J, and Mojović L (2019) Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews 108:238–252

    Article  Google Scholar 

  78. Gregory GL, López-Vidal EM, and Buchard A (2017) Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chemical Communications 53(14):2198–2217

    Article  CAS  Google Scholar 

  79. Naji A, Krause B, Pötschke P, and Ameli A (2019) Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications. Polymer Composites 40(8):3189–3198

    Article  CAS  Google Scholar 

  80. Jahan MP, Ma J, Hanson C, Chen X, and Arbuckle GK (2020) Experimental and numerical investigation of cutting forces in micro-milling of polycarbonate glass. Machining Science and Technology 24(3):366–397

    Article  CAS  Google Scholar 

  81. Yu Z, Wang JH, Li Y, and Bai Y (2020) Glass Fiber Reinforced Polycarbonate Composites for Laser Direct Structuring and Electroless Copper Plating. Polymer Engineering & Science 60(4):860–871

    Article  CAS  Google Scholar 

  82. Subin MC, Karthikeyan R, Periasamy C, and Sozharajan B (2020) Verification of the greenhouse roof-covering-material selection using the finite element method. Materials Today: Proceedings 21:357–366

    Google Scholar 

  83. Ribeiro E, Ladeira C, and Viegas S (2017) Occupational exposure to bisphenol A (BPA): a reality that still needs to be unveiled. Toxics 5(3):22

    Article  Google Scholar 

  84. De la Colina Martínez AL, Barrera GM, Díaz CEB, Córdoba LIÁ, Núñez FU, and Hernández DJD (2019) Recycled polycarbonate from electronic waste and its use in concrete: Effect of irradiation. Construction and Building Materials 201:778–785

    Article  Google Scholar 

  85. Park S-A, Eom Y, Jeon H, Koo JM, Lee ES, Jegal J, Hwang SY, Oh DX, and Park J (2019) Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chemistry 21(19):5212–5221

    Article  CAS  Google Scholar 

  86. Cui S, Borgemenke J, Liu Z, and Li Y (2019) Recent advances of “soft” bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. Journal of CO2 Utilization 34:40–52

    Article  CAS  Google Scholar 

  87. Lamberti FM, Román-Ramírez LA, and Wood J (2020) Recycling of bioplastics: routes and benefits. Journal of Polymers and the Environment 28(10):2551–2571

    Article  CAS  Google Scholar 

  88. Nandakumar A, Chuah J-A, and Sudesh K (2021) Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews 147:111237

    Article  CAS  Google Scholar 

  89. Nazrin A, Sapuan S, and Zuhri M (2020) Mechanical, physical and thermal properties of sugar palm nanocellulose reinforced thermoplastic starch (TPS)/poly (lactic acid)(PLA) blend bionanocomposites. Polymers 12(10):2216

    Article  CAS  Google Scholar 

  90. Ahmed MF, Li Y, Yao Z, Cao K, and Zeng C (2019) TPU/PLA blend foams: Enhanced foamability, structural stability, and implications for shape memory foams. Journal of Applied Polymer Science 136(17):47416

    Article  Google Scholar 

  91. Hazer S and Aytac A (2020) Effect of glass fiber reinforcement on the thermal, mechanical, and flame retardancy behavior of poly (lactic acid)/polycarbonate blend. Polymer Composites 41(4):1481–1489

    Article  CAS  Google Scholar 

  92. Yuan XS, Liu W, Zhu WY, and Zhu XX (2020) Enhancement in flux and antifouling properties of polyvinylidene fluoride/polycarbonate blend membranes for water environmental improvement. ACS omega 5(46):30201–30209

    Article  CAS  Google Scholar 

  93. Riaz S, Rhee KY, and Park SJ (2021) Polyhydroxyalkanoates (PHAs): biopolymers for biofuel and biorefineries. Polymers 13(2):253

    Article  CAS  Google Scholar 

  94. Chen G-Q and Albertsson A-C, Polyhydroxyalkanoates and other biopolymers. 2019, ACS Publications. p. 3211–3212.

    Google Scholar 

  95. Gahlawat G, Kumari P, and Bhagat NR (2020) Technological advances in the production of polyhydroxyalkanoate biopolymers. Current Sustainable/Renewable Energy Reports 7(3):73–83

    Article  CAS  Google Scholar 

  96. Association AGALG (2019) National Waste Policy Action Plan 2019. Australian Government: Canberra, Australia

    Google Scholar 

  97. Diggle A and Walker TR (2020) Implementation of harmonized Extended Producer Responsibility strategies to incentivize recovery of single-use plastic packaging waste in Canada. Waste Management 110:20–23

    Article  Google Scholar 

  98. Godfrey L (2019) Waste plastic, the challenge facing developing countries—ban it, change it, collect it? Recycling 4(1):3

    Article  Google Scholar 

  99. Leal Filho W, Saari U, Fedoruk M, Iital A, Moora H, Klöga M, and Voronova V (2019) An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of cleaner production 214:550–558

    Article  Google Scholar 

  100. Shooshtarian S, Maqsood T, Wong PS, Khalfan M, and Yang RJ (2021) Extended producer responsibility in the Australian construction industry. Sustainability 13(2):620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaira Naeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Naeem, S., Najeeb, J., Usman, S.M., Rafique, H. (2022). Biodegradable Polymers Challenges. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics