Skip to main content

Anthocyanins: Anthocyanidins, Berries, Colorants, Copigmentation

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Anthocyanins are colored water-soluble plant pigments. They represent a major subclass of flavonoids that are ubiquitous in nature and in the human diet. Anthocyanins are responsible for providing the intense red-orange to blue-violet colors present in many plant organs such as leaves, flowers, fruits, and vegetables. Berries and grapes are rich sources of anthocyanins. Owing to their appealing colors, anthocyanins have been increasingly used as colorants for the food industry and offer a natural alternative to the use of synthetic colorants. Anthocyanins have also garnered increased attention among researchers and manufacturers of functional foods due to their antioxidant, anti-inflammatory, antidiabetic, and anticancer properties that may exert a plethora of health-promoting benefits. This chapter is focused on the chemical structure of anthocyanins and how it relates to the stability of these compounds under the influence of several environmental factors including pH, temperature, oxygen, light, and presence of other food components (e.g., ascorbic acid, metal ions, sugars, sulfites, and sulfates). The chapter then expands on the technological and biological functionality of anthocyanins with particular emphasis on their coloring and antioxidant attributes followed by their bioavailability in the human body. Toxicology data is also reviewed, showing that consumption of anthocyanins as part of the diet is relatively safe given their low bioavailability. Finally, the chapter summarizes three major applications of anthocyanins in the food industry, including their use as value-added functional food ingredients, dietary supplements, and smart food packaging. In particular, the chapter discusses in detail technological challenges for incorporating anthocyanins into foods and strategies that have been developed to enhance their stability in food systems, which will serve as a very useful source of information on the development of functional food products containing anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aal ES, Hucl P. Composition and stability of anthocyanins in blue-grained wheat. J Agric Food Chem. 2003;51(8):2174–80.

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Aal ES, Hucl P, Rabalski I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chem. 2018;254:13–9.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Suarez JM, Cuadrado C, Redondo IB, Giampieri F, González-Paramás AM, Santos-Buelga C. Novel approaches in anthocyanin research-plant fortification and bioavailability issues. Trends Food Sci Technol. 2021;117:92–105.

    Article  CAS  Google Scholar 

  • Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regul Toxicol Pharmacol. 2015;73(3):914–22.

    Article  CAS  PubMed  Google Scholar 

  • Anuyahong T, Chusak C, Adisakwattana S. Incorporation of anthocyanin-rich riceberry rice in yogurts: effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT. 2020;129:109571.

    Article  CAS  Google Scholar 

  • Azuma A, Yakushiji H, Sato A. Postharvest light irradiation and appropriate temperature treatment increase anthocyanin accumulation in grape berry skin. Postharvest Biol Technol. 2019;147:89–99.

    Article  CAS  Google Scholar 

  • Bagchi D, Garg A, Krohn RL, Bagchi M, Bagchi DJ, Balmoori J, Stohs SJ. Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol Vasc S. 1998;30(5):771–6.

    Article  CAS  Google Scholar 

  • Becerril R, Nerín C, Silva F. Bring some colour to your package: freshness indicators based on anthocyanin extracts. Trends Food Sci Technol. 2021;111:495–505.

    Article  CAS  Google Scholar 

  • Bueno JM, Sáez-Plaza P, Ramos-Escudero F, Jiménez AM, Fett R, Asuero AG. Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Crit Rev Anal Chem. 2012;42(2):126–51.

    Article  CAS  Google Scholar 

  • Burin VM, Rossa PN, Ferreira-Lima NE, Hillmann MC, Boirdignon-Luiz MT. Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. Int J Food Sci Technol. 2011;46(1):186–93.

    Article  Google Scholar 

  • Calderaro A, Barreca D, Bellocco E, Smeriglio A, Trombetta D, Laganà G. Colored phytonutrients: role and applications in the functional foods of anthocyanins. In: Phytonutrients in food. Woodhead Publishing. United Kingdom: Cambridge; 2020. p. 177–95.

    Google Scholar 

  • Camire ME, Dougherty MP, Briggs JL. Functionality of fruit powders in extruded corn breakfast cereals. Food Chem. 2007;101(2):765–70.

    Article  CAS  Google Scholar 

  • Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: a review. Food Chem. 2009;113(4):859–71.

    Article  Google Scholar 

  • Castro-Acosta ML, Lenihan-Geels GN, Corpe CP, Hall WL. Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects. Proc Nutr Soc. 2016;75(3):342–55.

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti RN, Santos DT, Meireles MA. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int. 2011;44(2):499–509.

    Article  CAS  Google Scholar 

  • Cladis DP, Weaver CM, Ferruzzi MG. (poly) phenol toxicity in vivo following oral administration: a targeted narrative review of (poly) phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res. 2022;36(1):323–35.

    Article  CAS  PubMed  Google Scholar 

  • de Moura SC, da Rocha Tavares PE, Germer SP, Nisida AL, Alves AB, Kanaan AS. Degradation kinetics of anthocyanin of traditional and low-sugar blackberry jam. Food Bioprocess Technol. 2012;5(6):2488–96.

    Article  Google Scholar 

  • de Rosso VV, Mercadante AZ. Evaluation of colour and stability of anthocyanins from tropical fruits in an isotonic soft drink system. Innovative Food Sci Emerg Technol. 2007;8(3):347–52.

    Article  Google Scholar 

  • Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40(3):173–289.

    Article  CAS  PubMed  Google Scholar 

  • Eker ME, Aaby K, Budic-Leto I, Rimac Brnčić S, El SN, Karakaya S, Simsek S, Manach C, Wiczkowski W, de Pascual-Teresa S. A review of factors affecting anthocyanin bioavailability: possible implications for the inter-individual variability. Foods. 2019;9(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Enaru B, Drețcanu G, Pop TD, Stǎnilǎ A, Diaconeasa Z. Anthocyanins: factors affecting their stability and degradation. Antioxidants. 2021;10(12):1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairlie-Jones L, Davison K, Fromentin E, Hill AM. The effect of anthocyanin-rich foods or extracts on vascular function in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients. 2017;9(8):908.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Lin-Wang K, Jiang C, Zhou D, Lin Y, Pan S, Espley RV, Ye X. Postharvest temperature and light treatments induce anthocyanin accumulation in peel of ‘Akihime’plum (Prunus salicina Lindl.) via transcription factor PsMYB10. 1. Postharvest Biol Technol. 2021;179:111592.

    Article  CAS  Google Scholar 

  • Ficco DB, Borrelli GM, Giovanniello V, Platani C, De Vita P. Production of anthocyanin-enriched flours of durum and soft pigmented wheats by air-classification, as a potential ingredient for functional bread. J Cereal Sci. 2018;79:118–26.

    Article  CAS  Google Scholar 

  • Finley JW, Finley JW, Ellwood K, Hoadley J. Launching a new food product or dietary supplement in the United States: industrial, regulatory, and nutritional considerations. Annu Rev Nutr. 2014;34:421–47.

    Article  CAS  PubMed  Google Scholar 

  • Gamel TH, Wright AJ, Pickard M, Abdel-Aal ES. Characterization of anthocyanin-containing purple wheat prototype products as functional foods with potential health benefits. Cereal Chem. 2020;97(1):34–8.

    Article  CAS  Google Scholar 

  • Gérard V, Ay E, Morlet-Savary F, Graff B, Galopin C, Ogren T, Mutilangi W, Lalevée J. Thermal and photochemical stability of anthocyanins from black carrot, grape juice, and purple sweet potato in model beverages in the presence of ascorbic acid. J Agric Food Chem. 2019;67(19):5647–60.

    Article  PubMed  Google Scholar 

  • Ghafoor KA, Al-Juhaimi F, Choi YH. Effects of grape (Vitis labrusca B.) peel and seed extracts on phenolics, antioxidants and anthocyanins in grape juice. Pak J Bot. 2011;43(3):1581–6.

    Google Scholar 

  • Ghosh D, Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac J Clin Nutr. 2007;16(2)

    Google Scholar 

  • Giusti MM, Wrolstad RE. Unit F12 anthocyanins characterization and measurement with UV-visible spectroscopy. Curr Protocol Food Anal Chem. 2001;1:1–13.

    Google Scholar 

  • Giusti MM, Wrolstad RE. Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J. 2003;14(3):217–25.

    Article  CAS  Google Scholar 

  • Gowd V, Jia Z, Chen W. Anthocyanins as promising molecules and dietary bioactive components against diabetes–a review of recent advances. Trends Food Sci Technol. 2017;68:1–3.

    Article  CAS  Google Scholar 

  • Gris EF, Ferreira EA, Falcão LD, Bordignon-Luiz MT. Caffeic acid copigmentation of anthocyanins from cabernet sauvignon grape extracts in model systems. Food Chem. 2007;100(3):1289–96.

    Article  CAS  Google Scholar 

  • Harbourne N. Characterisation of phytochemicals for food applications 2008. PhD thesis. University College Dublin.

    Google Scholar 

  • Heredia FJ, Francia-Aricha EM, Rivas-Gonzalo JC, Vicario IM, Santos-Buelga C. Chromatic characterization of anthocyanins from red grapes—I. pH effect. Food Chem. 1998;63(4):491–8.

    Article  CAS  Google Scholar 

  • Huang Y, Zhou S, Zhao G, Ye F. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: a review. Trends Food Sci Technol. 2021;116:1141–54.

    Article  CAS  Google Scholar 

  • Hurst SM, Hurst RD. Anthocyanins, innate immunity, and exercise. In: Anthocyanins in health and disease. Melbourne: CRC Press. Taylor & Francis Books; 2010. p. 323–34.

    Google Scholar 

  • Kamiloglu S, Capanoglu E, Grootaert C, Van Camp J. Anthocyanin absorption and metabolism by human intestinal Caco-2 cells—a review. Int J Mol Sci. 2015a;16(9):21555–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiloglu S, Pasli AA, Ozcelik B, Van Camp J, Capanoglu E. Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: effect of processing, storage conditions and in vitro gastrointestinal digestion. J Funct Foods. 2015b;13:1–0.

    Article  CAS  Google Scholar 

  • Kamiloglu S, Ozkan G, Isik H, Horoz O, Van Camp J, Capanoglu E. Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: an in vitro digestion study with a standardized static model. LWT. 2017;77:475–81.

    Article  CAS  Google Scholar 

  • Kammerer DR. Anthocyanins. In: Handbook on natural pigments in food and beverages. Cambridge: Woolhead Publishing; 2016. p. 61–80.

    Chapter  Google Scholar 

  • Karakaya S, Simsek S, Eker AT, Pineda-Vadillo C, Dupont D, Perez B, Viadel B, Sanz-Buenhombre M, Rodriguez AG, Kertész Z, Hegyi A. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food Funct. 2016;7(8):3488–96.

    Article  CAS  PubMed  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1361779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DO, Padilla-Zakour OI. Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: cherry, plum, and raspberry. J Food Sci. 2004;69(9):S395–400.

    Article  CAS  Google Scholar 

  • Kim AN, Lee KY, Kim BG, Cha SW, Jeong EJ, Kerr WL, Choi SG. Thermal processing under oxygen–free condition of blueberry puree: effect on anthocyanin, ascorbic acid, antioxidant activity, and enzyme activities. Food Chem. 2021;342:128345.

    Article  CAS  PubMed  Google Scholar 

  • Kırca A, Özkan M, Cemeroglu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chem. 2006;97(4):598–605.

    Article  Google Scholar 

  • Lee J. Anthocyanin analyses of Vaccinium fruit dietary supplements. Food Sci Nutr. 2016a;4(5):742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J. Rosaceae products: anthocyanin quality and comparisons between dietary supplements and foods. NFS J. 2016b;4:1–8.

    Article  Google Scholar 

  • Lee DJ, Lee H, Lee SH, Lee CY, Kim DO. Effects of jam processing on anthocyanins and antioxidant capacities of Rubus coreanus Miquel berry. Food Sci Biotechnol. 2013;22(6):1607–12.

    Article  CAS  Google Scholar 

  • Li J, Li XD, Zhang Y, Zheng ZD, Qu ZY, Liu M, Zhu SH, Liu S, Wang M, Qu L. Identification and thermal stability of purple-fleshed sweet potato anthocyanins in aqueous solutions with various pH values and fruit juices. Food Chem. 2013;136(3–4):1429–34.

    Article  CAS  PubMed  Google Scholar 

  • Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016;7:17.1–17.19.

    Article  Google Scholar 

  • Liu Y, Liu Y, Tao C, Liu M, Pan Y, Lv Z. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. J Food Measure Character. 2018;12(3):1744–53.

    Article  Google Scholar 

  • Liu J, Tan Y, Zhou H, Mundo JL, McClements DJ. Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. J Food Eng. 2019;254:1–9.

    Article  CAS  Google Scholar 

  • Martín J, Kuskoski EM, Navas MJ, Asuero AG. Antioxidant capacity of anthocyanin pigments. Flavonoids Biosyn Human Health. 2017;3:205–55.

    Google Scholar 

  • Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25(17):3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J Agric Food Chem. 2009;57(5):1655–66.

    Article  CAS  PubMed  Google Scholar 

  • Mulyawanti I, Budijanto S, Yasni S. Stability of anthocyanin during processing, storage and simulated digestion of purple sweet potato pasta. Indonesian J Agric Sci. 2018;19(1):1–8.

    Article  Google Scholar 

  • Nassour R, Ayash A, Al-Tameemi K. Anthocyanin pigments: structure and biological importance. J Chem Pharm Sci. 2020;13:45–57.

    CAS  Google Scholar 

  • Ngamdee P, Bunnasart A, Sonda A. Development of a functional food: Milk chocolate fortified with anthocyanin from broken Riceberry. Life Sci Environ J. 2019;20(1):81–9.

    Google Scholar 

  • Ockermann P, Headley L, Lizio R, Hansmann J. A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health. Nutrients. 2021;13(8):2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqualone A, Bianco AM, Paradiso VM, Summo C, Gambacorta G, Caponio F, Blanco A. Production and characterization of functional biscuits obtained from purple wheat. Food Chem. 2015;180:64–70.

    Article  CAS  PubMed  Google Scholar 

  • Patras A, Brunton NP, O’Donnell C, Tiwari BK. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol. 2010;21(1):3–11.

    Article  CAS  Google Scholar 

  • Pineda-Vadillo C, Nau F, Guerin-Dubiard C, Jardin J, Lechevalier V, Sanz-Buenhombre M, Guadarrama A, Tóth T, Csavajda É, Hingyi H, Karakaya S. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chem. 2017;214:486–96.

    Article  CAS  PubMed  Google Scholar 

  • Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf. 2013;12(5):483–508.

    Article  CAS  PubMed  Google Scholar 

  • Qi Q, Chu M, Yu X, Xie Y, Li Y, Du Y, Liu X, Zhang Z, Shi J, Yan N. Anthocyanins and proanthocyanidins: chemical structures, food sources, bioactivities, and product development. Food Rev Int. 2022:2029479.

    Google Scholar 

  • Queiroz C, Mendes Lopes ML, Fialho E, Valente-Mesquita VL. Polyphenol oxidase: characteristics and mechanisms of browning control. Food Rev Int. 2008;24(4):361–75.

    Article  CAS  Google Scholar 

  • Seo JY, Jang JH, Kim JS, Kim EJ, Kim JS. Development of low-sugar antioxidant jam by a combination of anthocyanin-rich berries. Appl Biol Chem. 2016;59(2):305–12.

    Article  CAS  Google Scholar 

  • Shipp J, Abdel-Aal ES. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci J. 2010;4(1):7–22.

    Google Scholar 

  • Sng BJ, Mun B, Mohanty B, Kim M, Phua ZW, Yang H, Lee DY, Jang IC. Combination of red and blue light induces anthocyanin and other secondary metabolite biosynthesis pathways in an age-dependent manner in Batavia lettuce. Plant Sci. 2021;310:110977.

    Article  CAS  PubMed  Google Scholar 

  • Talavera S, Felgines C, Texier O, Besson C, Manach C, Lamaison JL, Rémésy C. Anthocyanins are efficiently absorbed from the small intestine in rats. J Nutr. 2004;134(9):2275–9.

    Article  CAS  PubMed  Google Scholar 

  • Tena N, Martín J, Asuero AG. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9(5):451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda T. Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res. 2012;56(1):159–70.

    Article  CAS  PubMed  Google Scholar 

  • Vidana Gamage GC, Lim YY, Choo WS. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. J Food Sci Technol. 2022;59(3):831–45.

    Article  CAS  PubMed  Google Scholar 

  • Wallace TC, Giusti MM. Anthocyanins. Adv Nutr. 2015;6(5):620–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace TC, Giusti MM. Anthocyanins—nature’s bold, beautiful, and health-promoting colors. Foods. 2019;8(11):550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Oliveira G, Lila MA. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr Rev Food Sci Food Saf. 2022.

    Google Scholar 

  • Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Front. 2020;1(1):60–9.

    Article  Google Scholar 

  • Yazhen S, Wenju W, Panpan Z, Yuanyuan Y, Panpan D, Wusen Z, Yanling W. Anthocyanins: novel antioxidants in diseases prevention and human health. In: Flavonoids-A coloring model for cheering up life. London: IntechOpen; 2019. p. 1–16.

    Google Scholar 

  • Yong H, Liu J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag Shelf Life. 2020;26:100550.

    Article  Google Scholar 

  • Yousuf B, Gul K, Wani AA, Singh P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr. 2016;56(13):2223–30.

    Article  CAS  PubMed  Google Scholar 

  • Zeven AC. Wheats with purple and blue grains: a review. Euphytica. 1991;56(3):243–58.

    Article  Google Scholar 

  • Zhao CL, Chen ZJ, Bai XS, Ding C, Long TJ, Wei FG, Miao KR. Structure–activity relationships of anthocyanidin glycosylation. Mol Divers. 2014;18(3):687–700.

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Liu Y, Zhao L, Wang Y. Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. J Agric Food Res. 2022;9:100340.

    CAS  Google Scholar 

  • Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao Y, Mi M, Jin T, Ling W. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57(11):1524–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Toan Do .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Do, D.T., Harbourne, N., Ellis, A. (2023). Anthocyanins: Anthocyanidins, Berries, Colorants, Copigmentation. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics