Skip to main content

Galacto-oligosaccharides

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Prebiotics are important components in functional foods. Galacto-oligosaccharides (GOS) are nondigestible oligosaccharides whose prebiotic condition has been conclusively proven. GOS are produced from lactose, which is a cheap commodity, usually in surplus from the cheese manufacturing industry. GOS synthesis is catalyzed by β-galactosidases that are cheap enzymes with a long record of use in the food industry for the production of low-lactose milk and dairies, so its use for GOS synthesis represents a remarkable technological opportunity. GOS have salient features that make them ideal for their incorporation into functional foods, especially in dairy products, so that a scheme of circular economy can be envisaged. Even though GOS production is well established at industrial level, several challenges remain that are related to the rather low yield of the kinetically controlled reaction of synthesis from lactose. This results in poor substrate utilization and complex downstream operations, so major efforts are devoted to developing better suited enzymes and cheaper and simpler downstream operations. This chapter focuses on GOS production within the framework of functional foods, with special emphasis on technological perspectives of their production, but basic aspects, like reaction mechanisms and mode of prebiotic action, are also revised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ambrogi V, Bottacini F, Cao L, Kuipers B, Schoterman M, van Sinderen D. Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Crit Rev Food Sci Nutr [Internet]. 2021;0(0):1–14. https://doi.org/10.1080/10408398.2021.1953437.

  • Balthazar CF, Silva HLA, Celeguini RMS, Santos R, Pastore GM, Conte Junior CA, et al. Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream. J Dairy Sci. 2015;98(7):4266–72.

    Article  CAS  PubMed  Google Scholar 

  • Benešová E, Lipovová P, Dvořáková H, Králová B. β-D-Galactosidase from Paenibacillus thiaminolyticus catalyzing transfucosylation reactions. Glycobiology. 2010;20(4):442–51.

    Article  PubMed  Google Scholar 

  • Buitron DI, Sepulveda L, Martinez TKM, Aguilar CN, Medina DD, Rodriguez-Herrera R, et al. Biotechnological approach for the production of prebiotics and search for new probiotics and their application in the food industry. Appl Food Biotechnol [Internet]. 2018;5(4):185–92. Available from: http://journals.sbmu.ac.ir/afb/article/view/20174

    CAS  Google Scholar 

  • Business-wire. Global galacto-oligosaccharide (GOS) market research report 202 [Internet]. online. 2021 [cited 2021 Nov 11]. p. 1. Available from: https://www.businesswire.com/news/home/20210623005487/en/Global-Galacto-oligosaccharide-GOS-Market-Research-Report-2021%2D%2D-ResearchAndMarkets.com

  • Catenza KF, Donkor KK. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: a review. Food Chem [Internet]. 2021;355(March):129416. Available from: https://doi.org/10.1016/j.foodchem.2021.129416.

  • Chen XY, Gänzle MG. Lactose and lactose-derived oligosaccharides: more than prebiotics? Int Dairy J. 2017;67:61–72.

    Article  CAS  Google Scholar 

  • Chen Q, Xiao Y, Zhang W, Zhang T, Jiang B, Stressler T, et al. Current research on cellobiose 2-epimerase: enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends Food Sci Technol [Internet]. 2018;82:167–76. https://doi.org/10.1016/j.tifs.2018.09.009.

    Article  CAS  Google Scholar 

  • Clasado Inc. GRAS Notice 484. GRAS Exemption Claim for Galacto-oligosaccharides [Internet]. 2013. Available from: http://wayback.archive-it.org/7993/20171031042742/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM379675.pdf

  • Córdova A, Astudillo C, Vera C, Guerrero C, Illanes A. Performance of an ultrafiltration membrane bioreactor (UF-MBR) as a processing strategy for the synthesis of galacto-oligosaccharides at high substrate concentrations. J Biotechnol. 2016;223:26–35

    Google Scholar 

  • Costabile A, Walton GE, Tzortzis G, Vulevic J, Charalampopoulos D, Gibson GR. Effects of orange juice formulation on prebiotic functionality using an in vitro colonic model system. PLoS One. 2015;10(3):1–12.

    Article  Google Scholar 

  • Dekker P, Koenders D, Bruins M. Lactose-free dairy products: market developments, production, nutrition and health benefits. Nutrients [Internet] 2019;11(3):551. Available from: https://www.mdpi.com/2072-6643/11/3/551

  • Ding H, Zhou L, Zeng Q, Yu Y, Chen B. Heterologous expression of a thermostable β-1,3-galactosidase and its potential in synthesis of galactooligosaccharides. Mar Drugs. 2018;16(11):1–12.

    Article  Google Scholar 

  • Fara A, Sabater C, Palacios J, Requena T, Montilla A, Zárate G. Prebiotic galactooligosaccharides production from lactose and lactulose by Lactobacillus delbrueckii subsp. bulgaricus CRL450. Food Funct. 2020;11(7):5875–86.

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Kleinschmidt T. Effect of glucose depletion during the synthesis of galactooligosaccharides using a trienzymatic system. Enzyme Microb Technol [Internet]. 2019;121(October 2018):45–50. https://doi.org/10.1016/j.enzmictec.2018.10.009.

  • Fischer C, Kleinschmidt T. Synthesis of galactooligosaccharides by Cryptococcus laurentii and Aspergillus oryzae using different kinds of acid whey. Int Dairy J. 2021;112:104867

    Google Scholar 

  • Fox PF. Lactose: chemistry and properties. In: McSweeney P, Fox P, editors. Advanced dairy chemistry [Internet]. New York: Springer New York; 2009. p. 1–15. https://doi.org/10.1007/978-0-387-84865-5_1.

    Chapter  Google Scholar 

  • Frenzel M, Zerge K, Clawin-Rädecker I, Lorenzen PC. Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT – Food Sci Technol. 2015;60(2):1068–71.

    Article  CAS  Google Scholar 

  • Friesland Foods Domo. Gras notice 236. GRAS exemption claim for galacto-oligosaccharides (GOS). 2007.

    Google Scholar 

  • Füreder V, Rodriguez-Colinas B, Cervantes FV, Fernandez-Arrojo L, Poveda A, Jimenez-Barbero J, et al. Selective synthesis of galactooligosaccharides containing β(1→3) linkages with β-galactosidase from Bifidobacterium bifidum (Saphera). J Agric Food Chem. 2020;68(17):4930–8.

    Article  PubMed  Google Scholar 

  • Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol [Internet]. 2017;14(8):491–502. Available from: http://www.nature.com/doifinder/10.1038/nrgastro.2017.75

    Article  PubMed  Google Scholar 

  • González-Delgado I, López-Muñoz MJ, Morales G, Segura Y. Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. Int Dairy J. 2016;61:211–9.

    Article  Google Scholar 

  • GRAS Associates. Gras notice 729. Galactooligosaccharides (GOS), food usage conditions for general gecognition of safety [Internet]. 2017. Available from: https://www.fda.gov/media/111860/download

  • Guerrero C, Vera C, Illanes A. Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto-oligosaccharides) with β-galactosidases of different origin. Food Chem. 2013 Jun;138(4):2225–32.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero C, Vera C, Serna N, Illanes A. Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresour Technol. 2017;232:53–63

    Google Scholar 

  • Guerrero C, Aburto C, Suárez S, Vera C, Illanes A. Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatal Agric Biotechnol [Internet]. 2018;16(August):353–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1878818118304250

    Article  Google Scholar 

  • Guimarães JT, Balthazar CF, Silva R, Rocha RS, Graça JS, Esmerino EA, et al. Impact of probiotics and prebiotics on food texture. Curr Opin Food Sci [Internet]. 2020;33:38–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214799319301316

    Article  Google Scholar 

  • Hernández O, Ruiz-Matute AI, Olano A, Moreno FJ, Sanz ML. Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int Dairy J. 2009;19(9):531–6.

    Article  Google Scholar 

  • Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A. Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem [Internet]. 2011;46(1):245–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359511310003296

    Article  CAS  Google Scholar 

  • Huh KT, Toba T, Adachi S. Oligosaccharide structures formed during acid hydrolysis of lactose. Food Chem. 1991;39(1):39–49.

    Article  CAS  Google Scholar 

  • Ibrahim OO. Functional oligosaccharides: chemicals structure, manufacturing, health benefits, applications and regulations. J Food Chem Nanotechnol. 2018:65–76.

    Google Scholar 

  • Illanes A, Vera C, Wilson L. Enzymatic production of galacto-oligosaccharides. In: Illanes A, Guerrero C, Vera C, Wilson L, Raúl Conejeros FS, editors. Lactose-derived prebiotics [Internet]. London: Academic; 2016. p. 111–89. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128027240000044.

    Chapter  Google Scholar 

  • Iqbal S, Nguyen T-H, Nguyen TT, Maischberger T, Haltrich D. β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res [Internet]. 2010 Jul 2 [cited 2019 Apr 29];345(10):1408–16. Available from: https://www.sciencedirect.com/science/article/pii/S0008621510001242

  • Iwatani S, Yamamoto N. Functional food products in Japan: a review. Food Sci Hum Wellness [Internet]. 2019 Jun;8(2):96–101. Available from: https://doi.org/10.1016/j.fshw.2019.03.011.

  • Jenab E, Omidghane M, Mussone P, Armada DH, Cartmell J, Montemagno C. Enzymatic conversion of lactose into galacto-oligosaccharides: the effect of process parameters, kinetics, foam architecture, and product characterization. J Food Eng [Internet]. 2018;222:63–72. https://doi.org/10.1016/j.jfoodeng.2017.11.015.

    Article  CAS  Google Scholar 

  • Johnstone N, Milesi C, Burn O, van den Bogert B, Nauta A, Hart K, et al. Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Sci Rep 2021;11(1):1–11.

    Google Scholar 

  • Jurado E, Camacho F, Luzón G, Vicaria JMM. Kinetic models of activity for β-galactosidases: influence of pH, ionic concentration and temperature. Enzyme Microb Technol [Internet]. 2004;34(1):33–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141022903002771

    Article  CAS  Google Scholar 

  • Kasche V. Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb Technol [Internet]. 1986;8(1):4–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/0141022986900037

    Article  CAS  Google Scholar 

  • Kim CS, Ji ES, Oh DK. A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem Biophys Res Commun. 2004;316(3):738–43.

    Article  CAS  PubMed  Google Scholar 

  • Kötzler MP, Hancock SM, Withers SG. Glycosidases: functions, families and folds. In: eLS [Internet]. Chichester: Wiley; 2014. p. 1–14. https://doi.org/10.1002/9780470015902.a0020548.pub2

  • Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv [Internet]. 2020;43(November 2019):107568. Available from: https://doi.org/10.1016/j.biotechadv.2020.107568.

  • Lu L, Guo L, Wang K, Liu Y, Xiao M. β-Galactosidases: a great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv [Internet]. 2020;39(November 2019):107465. https://doi.org/10.1016/j.biotechadv.2019.107465.

  • Martínez-Villaluenga C, Cardelle-Cobas A, Olano A, Corzo N, Villamiel M, Jimeno ML. Enzymatic synthesis and identification of two trisaccharides produced from lactulose by transgalactosylation. J Agric Food Chem [Internet]. 2008 Jan;56(2):557–63. https://doi.org/10.1021/jf0721343.

    Article  CAS  PubMed  Google Scholar 

  • Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front Nutr. 2019;6(May):78

    Google Scholar 

  • Matharu AS, de Melo EM, Houghton JA. Opportunity for high value-added chemicals from food supply chain wastes. Bioresour Technol [Internet]. 2016;215(4):123–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S096085241630325X

    Article  CAS  PubMed  Google Scholar 

  • Neri DFM, Balcão VM, Costa RS, Rocha IC a P, EMFC F, DPM T, et al. Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem. 2009;115(1):92–9.

    Article  CAS  Google Scholar 

  • Neri-Numa IA, Arruda HS, Geraldi MV, Maróstica Júnior MR, Pastore GM. Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr Opin Food Sci. 2020;33:98–107.

    Article  Google Scholar 

  • Nestle Nutritión U.S. GRAS notice 620. GRAS exemption claim for galacto-oligosaccharides [Internet]. 2016. Available from: https://wayback.archive-it.org/7993/20180124043912/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM504605.pdf

  • Ohtsuka K, Tsuji K, Nakagawa Y, Vera H, Ozawa O, Uchida T, et al. Availability of 4’galactosyllactose (O-.BETA.-D-galactopyranosyl-(1.RAR.4)-O-.BETA.-D-galactopyranosyl-(1.RAR.4)-D-glucopyranose) in rat. J Nutr Sci Vitaminol (Tokyo) [Internet]. 1990;36(3):265–76. Available from: http://www.jstage.jst.go.jp/article/jnsv1973/36/3/36_3_265/_article

    Article  CAS  Google Scholar 

  • Palai T, Mitra S, Bhattacharya PK. Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng. 2012;114(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  • Panesar PS, Kaur R, Singh RS, Kennedy JF. Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol [Internet]. 2018;111:667–79. https://doi.org/10.1016/j.ijbiomac.2018.01.062.

  • Petuely F. Bifidusflora bei Flaschenkindern durch bifidogene Substanzen (Bifidusfaktor). Z Kinderheilkd [Internet]. 1957;79(2):174–9. https://doi.org/10.1007/BF00440162.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan G, Krishnan C. Functional oligosaccharides: production and action. ACS Symp Ser. 2019;1329:155–80.

    Article  CAS  Google Scholar 

  • Rather M, Mishra S. β-Glycosidases: an alternative enzyme based method for synthesis of alkyl-glycosides. Sustain Chem Process [Internet] 2013;1(1):7. Available from: http://sustainablechemicalprocesses.springeropen.com/articles/10.1186/2043-7129-1-7

  • Rodriguez-Colinas B, De Abreu MA, Fernandez-Arrojo L, De Beer R, Poveda A, Jimenez-Barbero J, et al. Production of galacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: comparative analysis of permeabilized cells versus soluble enzyme. J Agric Food Chem. 2011;59(19):10477–84.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem. 2014;145:388–94.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Colinas B, Fernandez-Arrojo L, Santos-Moriano P, Ballesteros AO, Plou FJ. Continuous packed bed reactor with immobilized β-galactosidase for production of galactooligosaccharides (GOS). Catalysts [Internet] 2016 Nov 30;6(12):189. Available from: http://www.mdpi.com/2073-4344/6/12/189

  • Rosa MC, Carmo MRS, Balthazar CF, Guimarães JT, Esmerino EA, Freitas MQ, et al. Dairy products with prebiotics: an overview of the health benefits, technological and sensory properties. Int Dairy J. 2021;117:105009

    Google Scholar 

  • Sangwan V, Tomar SK, Singh RRB, Singh AK, Ali B. Galactooligosaccharides: novel components of designer foods. J Food Sci. 2011;76(4):R103–11.

    Article  CAS  PubMed  Google Scholar 

  • Santibáñez L, Fernández-Arrojo L, Guerrero C, Plou FJ, Illanes A. Removal of lactose in crude galacto-oligosaccharides by β-galactosidase from Kluyveromyces lactis. J Mol Catal B Enzym. 2016;133:85–91.

    Article  Google Scholar 

  • Scott F, Vera C, Conejeros R. Technical and economic analysis of industrial production of lactose-derived prebiotics with focus on galacto-oligosaccharides. In: Lactose-derived prebiotics [Internet]. Elsevier; 2016. p. 261–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012802724000007X

  • Seijo M, Bonanno MS, Vénica CI, Marotte C, Martín P, de Portela ML, Bergamini CV, et al. A yoghurt containing galactooligosaccharides and having low-lactose level improves calcium absorption and retention during growth: experimental study. Int J Food Sci Technol. 2021:1–9.

    Google Scholar 

  • Sneha HP, Beulah KC, Murthy PS. Enzyme immobilization methods and applications in the food industry. In: Enzymes in food biotechnology [Internet]. Elsevier; 2019. p. 645–58. https://doi.org/10.1016/B978-0-12-813280-7.00037-2.

  • Soni & Associates Inc. GRAS notice 569. GRAS notification for galacto-oligosaccharide (infant formula use) [Internet] 2015. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm

  • Spherix Consulting Inc. Gras notice 334. Generally recognized as safe (GRAS) determination for the use of galacto-oligosaccharides (GOS) in foods and infant formulas [Internet]. 2010. Available from: http://wayback.archive-it.org/7993/20171031050145/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM269519.pdf

  • Spherix Consulting Inc. GRAS notice 721. Generally recognized as safe determination for the use of VITAGOS in infant formula and selected conventional foods [Internet]. 2016. Available from: https://www.fda.gov/media/110690/download

  • Splechtna B, Nguyen T-H, Haltrich D. Comparison between is dcontinuous and continuous lactose conversion processes for the production of prebiotic galacto-oligosaccharides using β-galactosidase from Lactobacillus reuteri. J Agric Food Chem. 2007;55(16):6772–7.

    Article  CAS  PubMed  Google Scholar 

  • Suh MG, Hong YH, Jung EY, Suh HJ. Inhibitory effect of galactooligosaccharide on skin pigmentation. Prev Nutr Food Sci. 2019;24(3):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swennen K, Courtin CM, Delcour JA. Non-digestible oligosaccharides with prebiotic properties. Crit Rev Food Sci Nutr [Internet]. 2006;46(6):459–71. https://doi.org/10.1080/10408390500215746.

    Article  CAS  PubMed  Google Scholar 

  • The CAZypedia Consortium. Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology [Internet]. 2018;28(1):3–8. Available from: https://academic.oup.com/glycob/article/28/1/3/4430919

    Article  Google Scholar 

  • Ugidos-Rodríguez S, Matallana-González MC, Sánchez-Mata MC. Lactose malabsorption and intolerance: a review. Food Funct. 2018;9(8):4056–68.

    Article  PubMed  Google Scholar 

  • Urrutia P, Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Wilson L, Illanes A, et al. Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J Agric Food Chem. 2013a;61(5):1081–7.

    Article  CAS  PubMed  Google Scholar 

  • Urrutia P, Mateo C, Guisan JM, Wilson L, Illanes A. Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem Eng J [Internet]. 2013b 77:41–8. https://doi.org/10.1016/j.bej.2013.04.015.

  • van den Heuvel EGHM, Schoterman MHC, Muijs T. Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr [Internet]. 2000;130(12):2938–42. Available from: https://academic.oup.com/jn/article/130/12/2938/4686280

    Article  PubMed  Google Scholar 

  • Vera C. Optimización de la síntesis de galacto-oligosacaridos en modalidad de lote alimentado [Internet]. Pontificia Universidad Católica de Valparaíso; 2012 [cited 2019 Dec 8]. Available from: http://repositorio.conicyt.cl/handle/10533/184354

  • Vera C, Guerrero C, Illanes A. Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohydr Res [Internet]. 2011a;346(6):745–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0008621511000541

    Article  CAS  PubMed  Google Scholar 

  • Vera C, Guerrero C, Illanes A, Conejeros R. A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Biotechnol Bioeng [Internet]. 2011b;108(10):2270–9. https://doi.org/10.1002/bit.23201.

    Article  CAS  PubMed  Google Scholar 

  • Vera C, Guerrero C, Conejeros R, Illanes A. Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol [Internet]. 2012;50(3):188–94. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141022911002535

    Article  CAS  PubMed  Google Scholar 

  • Vera C, Guerrero C, Illanes A, Conejeros R. Fed-batch synthesis of galacto-oligosaccharides with Aspergillus oryzae β-galactosidase using optimal control strategy. Biotechnol Prog. 2014;30(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  • Vera C, Guerrero C, Aburto C, Cordova A, Illanes A. Conventional and non-conventional applications of β-galactosidases. Biochim Biophys Acta - Proteins Proteomics [Internet]. 2020;1868(1):140271. https://doi.org/10.1016/j.bbapap.2019.140271.

  • Vera C, Illanes A, Guerrero C. Enzymatic production of prebiotic oligosaccharides. Curr Opin Food Sci. 2021;37:160–70.

    Article  CAS  Google Scholar 

  • Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, et al. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr [Internet]. 2015;114(4):586–95. Available from: https://www.cambridge.org/core/product/identifier/S0007114515001889/type/journal_article

    Article  CAS  PubMed  Google Scholar 

  • Warmerdam A, Zisopoulos FK, Boom RM, Janssen AEM. Kinetic characterization of galacto-oligosaccharide (GOS) synthesis by three commercially important β-galactosidases. Biotechnol Prog. 2014;30(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  • Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, Ballesteros AO, Plou FJ, Arrizon J. Synthesis of β(1 → 3) and β(1 → 6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electron J Biotechnol. 2021;49:14–21.

    Article  Google Scholar 

  • Yang J, Xu Y. Functional carbohydrate polymers: prebiotics. Polymers for food applications 2018. 651–691 p.

    Google Scholar 

  • Yazawa K, Imai K, Tamura Z. Oligosaccharides and polysaccharides specifically utilizable by Bifidobacteria. Chem Pharm Bull (Tokyo) [Internet]. 1978;26(11):3306–11. Available from: https://www.jstage.jst.go.jp/article/cpb1958/26/11/26_11_3306/_article

  • Zhu ZY, Cui D, Gao H, Dong FY, Liu XC, Liu F, et al. Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides. Eur J Med Chem. 2016;114:8–13.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler C, Suss E, Lanciki A. Improving on AOAC 2001.02: GOS determination in foods using HPAEC–PAD [Internet]. 21-02-2021. 2021 [cited 2021 Nov 15]. p. 1. Available from: https://www.chromatographyonline.com/view/improving-on-aoac-2001-02-gos-determination-in-foods-using-hpaec-pad

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Vera or Andrés Illanes .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vera, C., Guerrero, C., Illanes, A. (2022). Galacto-oligosaccharides. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics