Skip to main content

Implementation of a Holonic Product-Based Platform for Increased Flexibility in Production Planning

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future (SOHOMA 2021)

Abstract

In the Industry 4.0 era, production planning problems are very relevant to production systems and are essential parts of the supply chain. Broadly speaking, production planning problems are tackled using models and methodologies, aiming for optimal solutions. This work introduces realism and stability to optimal production planning strategies using a holonic, product-driven manufacturing platform with increased flexibility. A model based on an anarchic holonic architecture and embedded intelligence logic provides decision-making capacity in a “production lot” in the face of disturbances. The proposed model is validated by comparing the results obtained with a lot-streaming mathematical programming model. Results show that significant changes in lot processing times (disturbances) generate significant changes in completion times. The proposed platform reduces up to 10.95% completion times in face of disturbances, generating significant benefits by increasing flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Răileanu, S.: Production scheduling in a holonic manufacturing system using the open-control concept. UPB Sci. Bull. Series C 72, 1–4. ISSN 1454-234x (2010)

    Google Scholar 

  2. Shahzad, A., Mebarki, N.: Learning dispatching rules for scheduling: a synergistic view comprising decision trees. Tabu Search Simul. Comput. 5, 16 (2016). https://doi.org/10.3390/computers5010003

    Article  Google Scholar 

  3. Fan, B.Q., Cheng, T.C.E.: Two-agent scheduling in a flowshop. Eur. J. Oper. Res. 252(2), 376–384 (2016). https://doi.org/10.1016/j.ejor.2016.01.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, C.-C., et al.: A two-stage three-machine assembly scheduling flowshop problem with both two-agent and learning phenomenon. Comput. Ind. Eng. 130, 485–499 (2019). https://doi.org/10.1016/j.cie.2019.02.047

    Article  Google Scholar 

  5. Ma, A., Nassehi, A., Snider, C.: Anarchic manufacturing. Int. J. Prod. Res. 57, 2514–2530 (2019). https://doi.org/10.1080/00207543.2018.1521534

    Article  Google Scholar 

  6. Role, M., Martinez, E.: Agent-based modeling and simulation of an autonomic manufacturing execution system. Comput. Ind. 63, 53–78 (2012). https://doi.org/10.1016/j.compind.2011.10.005

    Article  Google Scholar 

  7. McFarlane, D., Sarma, S., Chirn, J.: The intelligent product in manufacturing control and management. IFAC 35, 49–54 (2002). https://doi.org/10.3182/20020721-6-ES-1901.00011

    Article  Google Scholar 

  8. Kruger, K., Basson, A.H.: Evaluation criteria for holonic control implementations in manufacturing systems. Manuf. Syst. Mnt. J. Comp. Int. Man. 32, 148–158 (2019). https://doi.org/10.1080/0951192X.2018.1550674

    Article  Google Scholar 

  9. Leitão, P., Rodrigues, N., Barbosa, J., et al.: Intelligent products: the grace experience. Control Eng. Pract. 42, 95–105 (2015). https://doi.org/10.1016/j.conengprac.2015.05.001

    Article  Google Scholar 

  10. Wong, C.Y., McFarlane, D., Zaharudin, A.A., Agarwal, V.: The intelligent product driven supply chain. https://doi.org/10.1109/ICSMC.2002.1173319 (2014)

  11. Herrera, C.: Cadre générique de planification logistique dans un contexte de décisions centralisées et distribuées. Université Henry Poincaré - Nancy. NNT: 2011NAN10046 (2011)

    Google Scholar 

  12. Yadav, A., Jayswal, S.C.: Modelling of flexible manufacturing system: a review. Int. J. Prod. Res. 56, 2464–2487 (2018). https://doi.org/10.1080/00207543.2017.1387302

    Article  Google Scholar 

  13. Slack, N.: Flexibility as a manufacturing objective. Int. J. Oper. Manag. 3, 4–13 (1983). https://doi.org/10.1108/eb054696

    Article  Google Scholar 

  14. Read, K.K.: Fuzzy rule generation for adaptive scheduling in a dynamic manufacturing environment. Appl. Soft. Comput. J. 8, 1295–1304 (2008). https://doi.org/10.1016/j.asoc.2007.11.005

    Article  Google Scholar 

  15. Zhou, Y., Yang, J.J., Zheng, L.Y.: Multi-agent based hyper-heuristics for multi-objective flexible job shop scheduling: a case study in an aero-engine blade manufacturing plant. IEEE Access 7, 21147–21176 (2019). https://doi.org/10.1109/ACCESS.2019.2897603

    Article  Google Scholar 

  16. Demirel, E., Azelkan, E.C., Lim, C.: Aggregate planning with flexibility requirements profile. Int. J. Prod. Econ. 202, 45–58 (2018). https://doi.org/10.1016/j.ijpe.2018.05.001

    Article  Google Scholar 

  17. Stecke, K.E., Solberg, J.: Loading and control problem for a flexible manufacturing system. Int. J. Prod. Res. 19, 481–490 (1981)

    Article  Google Scholar 

  18. Topaloglu, S., Kilincli, G.: A modified shifting bottleneck heuristic for the reentrant job shop scheduling problem with makespan minimization. Int. J. Adv. Manuf. Technol. 44, 781–794 (2009). https://doi.org/10.1007/s00170-008-1881-y

    Article  MATH  Google Scholar 

  19. Ahmadi-Darani, M.H., Moslehi, G., Reisi-Nafchi, M.: A two-agent scheduling problem in a two-machine flowshop. Int. J. Ind. Eng. Comput. 9, 289–306 (2018). https://doi.org/10.5267/j.ijiec.2017.8.005

    Article  Google Scholar 

  20. Gu, J., Gu, M., Cao, C., Gu, X.: A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem. Comput. Oper. Res. 37, 927–937 (2010). https://doi.org/10.1016/j.cor.2009.07.002

    Article  MathSciNet  MATH  Google Scholar 

  21. Choi, S.H., Wang, K.: Flexible flow shop scheduling with stochastic processing times: a decomposition-based approach. Comput. Ind. Eng. 63, 362–373 (2012). https://doi.org/10.1016/j.cie.2012.04.001

    Article  Google Scholar 

  22. Wang, J., Zhang, Y., Liu, Y., Naiqi, W.: Multiagent and bargaining-game-based real-time scheduling for internet of things-enabled flexible job shop. IEEE Internet Things J. 6(2), 2518–2531 (2019). https://doi.org/10.1109/JIOT.2018.2871346

    Article  Google Scholar 

  23. Tseng, C., Liao, C.J.: A discrete particle swarm optimization for lot-streaming flow-shop scheduling problem. Eur. J. Oper. Res. 191, 360–373 (2008). https://doi.org/10.1016/j.ejor.2007.08.030

    Article  MATH  Google Scholar 

  24. Kumar, S., Bagchi, T.P., Sriskandarajah, C.: Lot streaming and scheduling heuristics for m-machine no-wait flowshops. Comput. Ind. Eng. 38, 149–172 (2000). https://doi.org/10.1016/S0360-8352(00)00035-8

    Article  Google Scholar 

  25. Potts, C.N., Baker, K.R.: Flow shop scheduling with lot streaming. Oper. Res. Lett. 8, 297–303 (1989). https://doi.org/10.1016/0167-6377(89)90013-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Trietsch, D., Baker, K.: Basic techniques for lot streaming. Oper. Res. 41(6), 1065–1076 (1993). https://doi.org/10.1287/opre.41.6.1065

    Article  MATH  Google Scholar 

  27. Gharaei, A., Jolai, F.: A multi-agent approach to the integrated production scheduling and distribution problem in multi-factory supply chain. Appl. Soft. Comput. J. 65, 577–589 (2018). https://doi.org/10.1016/j.asoc.2018.02.002

    Article  Google Scholar 

  28. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling Northwestern University Evanston. http://ccl.northwestern.edu/netlogo/ (1999)

  29. Yu, F., Wen, P., Yi, S.: A multi-agent scheduling problem for two identical parallel machines to minimize total tardiness time and makespan. Adv. Mech. Eng. 10, 1–14 (2018). https://doi.org/10.1177/1687814018756103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Sáez Bustos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sáez Bustos, P., Herrera López, C. (2021). Implementation of a Holonic Product-Based Platform for Increased Flexibility in Production Planning. In: Trentesaux, D., Borangiu, T., Leitão, P., Jimenez, JF., Montoya-Torres, J.R. (eds) Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-030-80906-5_12

Download citation

Publish with us

Policies and ethics