Skip to main content

The Problem of Motion Sickness and Its Implications for Automated Driving

  • Chapter
  • First Online:
User Experience Design in the Era of Automated Driving

Part of the book series: Studies in Computational Intelligence ((SCI,volume 980))

Abstract

Motion sickness impairs user experience and reduces engagement in non-driving related tasks in automated driving. The present chapter provides an overview on research on motion sickness and discusses strategies to prevent motion sickness in automated driving. First, we describe major theories on the emergence of MS, and introduce relevant research methods. Second, we provide a selective review on studies on motion sickness in driving. Here, we mainly focus on motion sickness in the context of automated driving but also describe relevant studies from research on non-automated driving. Based on the reviewed theoretical and empirical work, a final part discusses implications and derives recommendations on how motion sickness in automated driving can be effectively prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Golding, J.F., Gresty, M.A.: Motion sickness and disorientation in vehicles. In: Bronstein, A. (ed.) Oxford Textbook of Vertigo and Imbalance, pp. 293–306. Oxford University Press (2013)

    Google Scholar 

  2. Graybiel, A., Knepton, J.: Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47, 873–882 (1976)

    Google Scholar 

  3. Matsangas, P., McCauley, M.E.: Sopite syndrome: a revised definition. Aviat Space Environ Med (2014). https://doi.org/10.3357/ASEM.3891.2014

    Article  Google Scholar 

  4. Bertolini, G., Straumann, D.: Moving in a moving world: a review on vestibular motion sickness. Front. Neurol. (2016). https://doi.org/10.3389/fneur.2016.00014

    Article  Google Scholar 

  5. Tuthill, J.C., Azim, E.: Proprioception. Current biology : CB (2018). https://doi.org/10.1016/j.cub.2018.01.064

    Article  Google Scholar 

  6. Balaban, C.D., Yates, B.J.: What is nausea? A historical analysis of changing views. Autono. Neurosci. Basic Clin. (2017). https://doi.org/10.1016/j.autneu.2016.07.003

    Article  Google Scholar 

  7. Oman, C.M.: Are evolutionary hypotheses for motion sickness “just-so” stories? J. Vestib. Res. Equilibr. Orientation (2012). https://doi.org/10.3233/VES-2011-0432

    Article  Google Scholar 

  8. Reason, J.T., Brand, J.J.: Motion Sickness. Academic, London (1975)

    Google Scholar 

  9. Reason, J.T.: Motion sickness adaptation: a neural mismatch model. J. R. Soc. Med. 71, 819–829 (1978)

    Google Scholar 

  10. Reason, J.T., Benson, A.J.: Voluntary movement control and adaptation to cross-coupled stimulation. Aviat. Space Environ. Med. 49, 1275–1280 (1978)

    Google Scholar 

  11. Oman, C.M.: A heuristic mathematical model for the dynamics of sensory conflict and motion sickness hearing in classical musicians. Acta Otolaryngol. (1982). https://doi.org/10.3109/00016488209108197

    Article  Google Scholar 

  12. Oman, C.M.: Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 68, 294–303 (1990)

    Google Scholar 

  13. Bles, W., Bos, J.E., Graaf, B.d., Groen, E., Wertheim, A.H.: Motion sickness: only one provocative conflict? Brain Res. Bull. 47, 481–487 (1998)

    Google Scholar 

  14. Bos, J.E., Bles, W.: Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res. Bull. 47, 537–542 (1999)

    Google Scholar 

  15. Kamiji, N., Kurata, Y., Wada, T., Doi, S.: Modeling and validation of carsickness mechanism. In: SICE Annual Conference (2007)

    Google Scholar 

  16. Wada, T., Fujisawa, S., Doi, S.: Analysis of driver’s head tilt using a mathematical model of motion sickness. Int. J. Ind. Ergon. (2018). https://doi.org/10.1016/j.ergon.2016.11.003

    Article  Google Scholar 

  17. Oman, C.M., Cullen, K.E.: Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp. Brain Res. (2014). https://doi.org/10.1007/s00221-014-3973-2

    Article  Google Scholar 

  18. Riccio, G.E., Stoffregen, T.A.: An ecological Theory of Motion Sickness and Postural Instability. Ecol. Psychol. (1991). https://doi.org/10.1207/s15326969eco0303_2

    Article  Google Scholar 

  19. Stoffregen, T.A., Yoshida, K., Villard, S., Scibora, L., Bardy, B.G.: Stance width influences postural stability and motion sickness. Ecol. Psychol. (2010). https://doi.org/10.1080/10407413.2010.496645

    Article  Google Scholar 

  20. Smart, L.J., Stoffregen, T.A., Bardy, B.G.: Visually induced motion sickness predicted by postural instability. Hum. Factors 44, 451–465 (2002)

    Google Scholar 

  21. Stoffregen, T.A., Smart, L.J.: Postural instability precedes motion sickness. Brain Res. Bull. (1998). https://doi.org/10.1016/S0361-9230(98)00102-6

    Article  Google Scholar 

  22. Villard, S.J., Flanagan, M.B., Albanese, G.M., Stoffregen, T.A.: Postural instability and motion sickness in a virtual moving room. Hum. Factors (2008). https://doi.org/10.1518/001872008X250728

    Article  Google Scholar 

  23. Warwick-Evans, L.A., Symons, N., Fitch, T., Burrows, L.: Evaluating sensory conflict and postural instability. Theories of motion sickness. Brain Res. Bull. 47, 464–469 (1998)

    Google Scholar 

  24. Dennison, M.S., D’Zmura, M.: Cybersickness without the wobble: Experimental results speak against postural instability theory. Appl. Ergon. (2017). https://doi.org/10.1016/j.apergo.2016.06.014

    Article  Google Scholar 

  25. Pellecchia, G.L.: Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture (2003). https://doi.org/10.1016/S0966-6362(02)00138-8

    Article  Google Scholar 

  26. Stoffregen, T.A., Hove, P., Bardy, B.G., Riley, M., Bonnet, C.T.: Postural stabilization of perceptual but not cognitive performance. J. Mot. Behav. (2007). https://doi.org/10.3200/JMBR.39.2.126-138

    Article  Google Scholar 

  27. Stein, M., Robinski, M.: Simulator sickness in flight simulators of the German armed forces. Aviat. Psychol. Appl. Hum. Factors (2012). https://doi.org/10.1027/2192-0923/a000022

    Article  Google Scholar 

  28. Bos, J.E.: Less sickness with more motion and/or mental distraction. J. Vestib. Res. Equilibr. Orientation (2015). https://doi.org/10.3233/VES-150541

    Article  Google Scholar 

  29. Regan, E.C., Price, K.R.: The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviat Space Environ. Med. 65, 527–530 (1994)

    Google Scholar 

  30. Macefield, V.G., Walton, D.K.: Susceptibility to motion sickness is not increased following spinal cord injury. J. Vestib. Res. Equilibr. Orientation (2015). https://doi.org/10.3233/VES-150542

    Article  Google Scholar 

  31. Lackner, J.R.: Motion sickness: more than nausea and vomiting. Exp. Brain Res. (2014). https://doi.org/10.1007/s00221-014-4008-8

    Article  Google Scholar 

  32. Bowins, B.: Motion sickness: a negative reinforcement model. Brain Res. Bull. (2010). https://doi.org/10.1016/j.brainresbull.2009.09.017

    Article  Google Scholar 

  33. Watt, D.G.D., Bouyer, L.J.G., Nevo, I.T., Smith, A.V., Tiande, Y.: What is motion sickness? Ann. N. Y. Acad. Sci. 660–667 (1992)

    Google Scholar 

  34. Guedry, F.E., Rupert, A.R., Reschke, M.F.: Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Res. Bull. (1998). https://doi.org/10.1016/S0361-9230(98)00087-2

  35. Treisman, M.: Motion sickness: an evolutionary hypothesis. Science (1977). https://doi.org/10.1126/science.301659

  36. Money, K.E.: Motion sickness. Physiol. Rev. (1970). https://doi.org/10.1152/physrev.1970.50.1.1

  37. Bos, J.E., Bles, W.: Motion sickness induced by optokinetic drums. Aviat. Space Environ. Med. 75, 172–174 (2004)

    Google Scholar 

  38. Hu, S., Grant, W.F., Stern, R.M., Koch, K.L.: Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat. Space Environ. Med. 62, 308–314 (1991)

    Google Scholar 

  39. Bles, W., Willem, Bos, E, J., Kruit, H.: Motion sickness. Curr. Opin. Neurol. 13, 19–25 (2000)

    Google Scholar 

  40. Ji, J.T.T., So, R.H.Y., Cheung, R.T.F.: Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Hum. Factors (2009). https://doi.org/10.1177/0018720809349708

    Article  Google Scholar 

  41. Stoffregen, T.A., Hove, P., Schmit, J., Bardy, B.G.: Voluntary and involuntary postural responses to imposed optic flow. Mot. Control (2006). https://doi.org/10.1123/mcj.10.1.24

    Article  Google Scholar 

  42. LaViola, J.J.: A discussion of cybersickness in virtual environments. SIGCHI Bull. (2000). https://doi.org/10.1145/333329.333344

    Article  Google Scholar 

  43. Sharples, S., Cobb, S., Moody, A., Wilson, J.R.: Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays (2008). https://doi.org/10.1016/j.displa.2007.09.005

    Article  Google Scholar 

  44. Curtis, M.K., Dawson, K., Jackson, K., Litwin, L., Meusel, C., Dorneich, M.C., Gilbert, S.B., Kelly, J., Stone, R., Winer, E.: Mitigating visually induced motion sickness. Proc. Hum. Factors Ergon. Soc. Annu. Meet. (2015). https://doi.org/10.1177/1541931215591397

    Article  Google Scholar 

  45. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Nesbitt, K., Blackmore, K., Smith, S.P. (eds.) Proceedings of the 2014 Conference on Interactive Entertainment. Conference on Interactive Entertainment, Newcastle, NSW, Australia, December 2–3, pp. 1–9. ACM Press, New York, New York (2014). https://doi.org/10.1145/2677758.2677780

  46. Stoffregen, T.A., Faugloire, E., Yoshida, K., Flanagan, M.B., Merhi, O.: Motion sickness and postural sway in console video games. Hum. Factors (2008). https://doi.org/10.1518/001872008X250755

    Article  Google Scholar 

  47. Keshavarz, B., Ramkhalawansingh, R., Haycock, B., Shahab, S., Campos, J.L.: Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transport. Res. F: Traffic Psychol. Behav. (2018). https://doi.org/10.1016/j.trf.2018.01.007

    Article  Google Scholar 

  48. Stott, J.R.R.: Mechanisms and treatment of motion illness. In: Davis, C.J., Lake-Bakaar, G.V., Grahame-Smith, D.G. (eds.) Nausea and Vomiting: Mechanisms and Treatment. Advances in Applied Neurological Sciences, vol. 3, pp. 110–129. Springer, Berlin (1986)

    Google Scholar 

  49. Benson, A.J., Bodin, C.B., Bodin, M.A.: Comparison of the effect of the direction of the gravitational acceleration on post-rotational responses in yaw, pitch and roll. Aerosp. Med. 37, 889–897 (1966)

    Google Scholar 

  50. Graybiel, A., Clark, B., Zaraiello, J.J.: Observations on human subjects living in a “slow rotation room” for periods of two days. Arch. Neurol. (1960). https://doi.org/10.1001/archneur.1960.00450010055006

    Article  Google Scholar 

  51. Matsangas, P., McCauley, M.E.: Yawning as a behavioral marker of mild motion sickness and sopite syndrome. Aviat. Space Environ. Med. (2014). https://doi.org/10.3357/ASEM.3897.2014

    Article  Google Scholar 

  52. O'Hanlon, J.F., McCauley, M.E.: Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Human Factors Research, Incorporated, Goleta CA (1973)

    Google Scholar 

  53. Golding, J.F., Mueller, A.G., Gresty, M.A.: A motion sickness maximum around the 0.2 Hz frequency range of horizontal translational oscillation. Aviat. Space Environ. Med. 72, 188–192 (2001)

    Google Scholar 

  54. Turner, M., Griffin, M.J.: Motion sickness in public road transport: the effect of driver, route and vehicle. Ergonomics (1999). https://doi.org/10.1080/001401399184730

    Article  Google Scholar 

  55. Diels, C., Howarth, P.A.: Frequency characteristics of visually induced motion sickness. Hum. Factors (2013). https://doi.org/10.1177/0018720812469046

    Article  Google Scholar 

  56. Hammam, E., Macefield, V.G.: Vestibular modulation of sympathetic nerve activity to muscle and skin in humans. Front. Neurol. (2017). https://doi.org/10.3389/fneur.2017.00334

    Article  Google Scholar 

  57. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. Proc. Hum. Factors Ergon. Soc. Annu. Meet. (1997). https://doi.org/10.1177/107118139704100292

    Article  Google Scholar 

  58. Champney, R.K., Stanney, K.M., Hash, P.A.K., Malone, L.C., Kennedy, R.S., Compton, D.E.: Recovery from virtual environment exposure: expected time course of symptoms and potential readaptation strategies. Hum. Factors (2007). https://doi.org/10.1518/001872007X200120

    Article  Google Scholar 

  59. Dużmańska, N., Strojny, P., Strojny, A.: Can simulator sickness be avoided? A review on temporal aspects of simulator sickness. Front. Psychol. (2018). https://doi.org/10.3389/fpsyg.2018.02132

    Article  Google Scholar 

  60. Mazloumi Gavgani, A., Walker, F.R., Hodgson, D.M., Nalivaiko, E.: A comparative study of cybersickness during exposure to virtual reality and “classic” motion sickness: are they different? J. Appl. Physiol. (2018). https://doi.org/10.1152/japplphysiol.00338.2018

    Article  Google Scholar 

  61. Lackner, J.R., DiZio, P.: Space motion sickness. Experimental brain research (2006). https://doi.org/10.1007/s00221-006-0697-y

    Article  Google Scholar 

  62. Bagshaw, M., Stott, J.R.: The desensitization of chronically motion sick aircrew in the Royal Air Force. Aviat Space Environ. Med. 56, 1144–1151 (1985)

    Google Scholar 

  63. McCauley, M.E., Royal, J.W., Wylie, C.D., O’Hanlon, J.F., Mackie, R.R.: Motion sickness incidence: Exploratory studies of habituation, pitch and roll, and the refinement of a mathematical model. Human Factors Research, Incorporated, Goleta CA (1976)

    Google Scholar 

  64. Griffin, M.J., Newman, M.M.: Visual field effects on motion sickness in cars. Aviat Space Environ Med 75, 739–748 (2004)

    Google Scholar 

  65. Keshavarz, B., Hecht, H.: Validating an efficient method to quantify motion sickness. Hum. Factors (2011). https://doi.org/10.1177/0018720811403736

    Article  Google Scholar 

  66. Graybiel, A., Wood, C.D., Miller II, E.F.: Diagnostic criteria for grading the severity of acute motion sickness. Aerosp. Med. 39, 453–455 (1968)

    Google Scholar 

  67. Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47, 507–516 (1998)

    Google Scholar 

  68. Golding, J.F.: Predicting individual differences in motion sickness susceptibility by questionnaire. Personality Individ. Differ. (2006). https://doi.org/10.1016/j.paid.2006.01.012

    Article  Google Scholar 

  69. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  70. Nichols, S., Cobb, S., Wilson, J.R.: Health and safety implications of virtual environments: measurement issues. Presence: Teleoperators Virtual Environ. (1997). https://doi.org/10.1162/pres.1997.6.6.667

  71. Gianaros, P.J., Muth, E.R., Mordkoff, T.J., Levine, M.E., Stern, R.M.: A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviat. Space Environ. Med. 72, 115–119 (2001)

    Google Scholar 

  72. Brill, J.C., Kass, S.J., Lawson, B.D.: Mild motion questionnaire (MMQ): Further evidence of construct validity. In: Proceedings of the Human Factors And Economics Society 48th Annual Meeting, Orleans, Louisiana, September 20–24, 2004, pp. 2503–2507 (2004)

    Google Scholar 

  73. Brill, J.C., Nilson, B.N.: A factor-analytical perspective of sopite syndrome assessment in aerospace systems. In: 16th International Symposium on Aviation Psychology (2011)

    Google Scholar 

  74. Kennedy, R.S., Fowlkes, J.E., Berbaum, K.S., Lilienthal, M.G.: Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviat. Space Environ. Med. 63, 588–593 (1992)

    Google Scholar 

  75. Griffin, M.J., Howarth, M.V.C.: Motion Sickness History Questionnaire. Institute of Sound and Vibration Research, Southampton (2000)

    Google Scholar 

  76. Shupak, A., Gordon, C.R.: Motion sickness: advances in pathogenesis, prediction, prevention, and treatment. Aviat. Space Environ. Med. 77, 1213–1223 (2006)

    Google Scholar 

  77. Stern, R.M., Koch, K.L., Leibowitz, H.W., Lindblad, I.M., Shupert, C.L., Stewart, W.R.: Tachygastria and motion sickness. Aviat. Space Environ. Med. 56, 1074–1077 (1985)

    Google Scholar 

  78. Stern, R.M., Koch, K.L., Stewart, W.R., Lindblad, I.M.: Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology (1987). https://doi.org/10.5555/uri:pii:0016508587908432

    Article  Google Scholar 

  79. Cowings, P.S., Toscano, W.B.: Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J. Clin. Pharmacol. 40, 1154–1165 (2000)

    Google Scholar 

  80. Himi, N., Koga, T., Nakamura, E., Kobashi, M., Yamane, M., Tsujioka, K.: Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Auton. Neurosci. Basic Clin. (2004). https://doi.org/10.1016/j.autneu.2004.08.008

    Article  Google Scholar 

  81. Cowings, P.S., Naifeh, K.H., Toscano, W.B.: The stability of individual patterns of autonomic responses to motion sickness stimulation. Aviat. Space Environ. Med. 61, 399–405 (1990)

    Google Scholar 

  82. Miller, J.C., Sharkey, T.J., Graham, G.A., McCauley, M.E.: Autonomic Physiological Data Associated with Simulator Discomfort. Aviat. Space Environ. Med. 64, 813–819 (1993)

    Google Scholar 

  83. Cheung, B., Hofer, K.: Coriolis-induced cutaneous blood flow increase in the forearm and calf. Brain Res. Bull. 54, 609–618 (2001)

    Google Scholar 

  84. Farmer, A.D., Al Omran, Y., Aziz, Q., Andrews, P.L.: The role of the parasympathetic nervous system in visually induced motion sickness: systematic review and meta-analysis. Exp. Brain Res. (2014). https://doi.org/10.1007/s00221-014-3964-3

    Article  Google Scholar 

  85. Doweck, I., Gordon, C.R., Shlitner, A., Spitzer, O., Gonen, A., Binah, O., Melamed, Y., Shupak, A.: Alterations in R-R variability associated with experimental motion sickness. J. Auton. Nerv. Syst. (1997). https://doi.org/10.1016/s0165-1838(97)00090-8

    Article  Google Scholar 

  86. Malińska, M., Zużewicz, K., Bugajska, J., Grabowski, A.: Heart rate variability (HRV) during virtual reality immersion. Int. J. Occup. Safety Ergon. JOSE (2015). https://doi.org/10.1080/10803548.2015.1017964

    Article  Google Scholar 

  87. Ohyama, S., Nishiike, S., Watanabe, H., Matsuoka, K., Akizuki, H., Takeda, N., Harada, T.: Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx (2007). https://doi.org/10.1016/j.anl.2007.01.002

  88. Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology (2005). https://doi.org/10.1111/j.1469-8986.2005.00349.x

    Article  Google Scholar 

  89. Golding, J.F.: Phasic skin conductance activity and motion sickness. Aviat. Space Environ. Med. 63, 165–171 (1992)

    Google Scholar 

  90. McClure, J.A., Fregly, A.R., Molina, E., Graybiel, A.: Response from arousal and thermal sweat areas during motion sickness. Naval Aerospace Med. Research Laboratory, Pensacola (1971)

    Google Scholar 

  91. Chuang, S.-W., Chuang, C.-H., Yu, Y.-H., King, J.-T., Lin, C.-T.: EEG alpha and gamma modulators mediate motion sickness-related spectral responses. Int. J. Neural Syst. (2016). https://doi.org/10.1142/S0129065716500076

    Article  Google Scholar 

  92. Yates, B.J., Bolton, P.S., Macefield, V.G.: Vestibulo-sympathetic responses. Compr. Physiol. (2014). https://doi.org/10.1002/cphy.c130041

    Article  Google Scholar 

  93. Harm, D.L.: Physiology of motion sickness symptoms. In: Crampton, G.H. (ed.) Motion and Space Motion Sickness, pp. 153–177. CRC Press, Boca Raton, Florida (1990)

    Google Scholar 

  94. Holmes, S.R., King, S., Rollin Scott, J.R., Clemes, S.: Facial skin pallor increases during motion sickness. J. Psychophysiol. (2002). https://doi.org/10.1027//0269-8803.16.3.150

    Article  Google Scholar 

  95. Bertin, R.J.V., Collet, C., Espié, S., Graf, W.: Objective measurement of simulator sickness and the role of visual-vestibular conflict situations. In: DSC-NA 2005. Driving Simulator Conference—North America, Orlando, FL, pp. 280–293 (2005)

    Google Scholar 

  96. Min, B.-C., Chung, S.-C., Min, Y.-K., Sakamoto, K.: Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Appl. Ergon. (2004). https://doi.org/10.1016/j.apergo.2004.06.002

    Article  Google Scholar 

  97. Klingberg, D., Hammam, E., Macefield, V.G.: Motion sickness is associated with an increase in vestibular modulation of skin but not muscle sympathetic nerve activity. Exp. Brain Res. (2015). https://doi.org/10.1007/s00221-015-4313-x

    Article  Google Scholar 

  98. Yen Pik Sang, F., Golding, J.F., Gresty, M.A.: Suppression of sickness by controlled breathing during mildly nauseogenic motion. Aviat. Space Environ. Med. 74, 998–1002 (2003)

    Google Scholar 

  99. Arsalan Naqvi, S.A., Badruddin, N., Jatoi, M.A., Malik, A.S., Hazabbah, W., Abdullah, B.: EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS). Australas. Phys. Eng. Sci. Med. (2015). https://doi.org/10.1007/s13246-015-0379-9

    Article  Google Scholar 

  100. Hu, S., McChesney, K.A., Player, K.A., Bahl, A.M., Buchanan, J.B., Scozzafava, J.E.: Systematic investigation of physiological correlates of motion sickness induced by viewing an optokinetic rotating drum. Aviat. Space Environ. Med. 70, 759–765 (1999)

    Google Scholar 

  101. Chen, Y.-C., Duann, J.-R., Chuang, S.-W., Lin, C.-L., Ko, L.-W., Jung, T.-P., Lin, C.-T.: Spatial and temporal EEG dynamics of motion sickness. Neuroimage (2010). https://doi.org/10.1016/j.neuroimage.2009.10.005

    Article  Google Scholar 

  102. Varlet, M., Bardy, B.G., Chen, F.-C., Alcantara, C., Stoffregen, T.A.: Coupling of postural activity with motion of a ship at sea. Exp. Brain Res. (2015). https://doi.org/10.1007/s00221-015-4235-7

    Article  Google Scholar 

  103. Donohew, B.E., Griffin, M.J.: Motion sickness: effect of the frequency of lateral oscillation. Aviat. Space Environ. Med. 75, 649–656 (2004)

    Google Scholar 

  104. Griffin, M.J., Newman, M.M.: An experimental study of low-frequency motion in cars. Proc. Inst. Mech. Engineers Part D J. Automobile Eng. (2004). https://doi.org/10.1243/0954407042580093

  105. Golding, J.F., Bles, W., Bos, J.E., Haynes, T., Gresty, M.A.: Motion sickness and tilts of the inertial force environment: active suspension systems vs. active passengers. Aviat. Space Environ. Med. 74, 220–227 (2003)

    Google Scholar 

  106. Wada, T., Konno, H., Fujisawa, S., Doi, S.: Can passengers’ active head tilt decrease the severity of carsickness? Effect of head tilt on severity of motion sickness in a lateral acceleration environment. Hum. Factors (2012). https://doi.org/10.1177/0018720812436584

  107. Turner, M., Griffin, M.J.: Motion sickness in public road transport: the relative importance of motion, vision and individual differences. Br. J. Psychol. 90, 519–530 (1999)

    Google Scholar 

  108. Duh, H.B.-L., Parker, D.E., Philips, J.O., Furness, T.A.: “Conflicting” motion cues to the visual and vestibular self-motion systems around 0.06 Hz evoke simulator sickness. Hum. Factors (2004). https://doi.org/10.1518/hfes.46.1.142.30384

  109. Chen, D.J., Bao, B., Zhao, Y., So, R.H.Y.: Visually induced motion sickness when viewing visual oscillations of different frequencies along the fore-and-aft axis: keeping velocity versus amplitude constant. Ergonomics (2016). https://doi.org/10.1080/00140139.2015.1078501

    Article  Google Scholar 

  110. Tanguy, S., Quarck, G., Etard, O., Gauthier, A., Denise, P.: Vestibulo-ocular reflex and motion sickness in figure skaters. Eur. J. Appl. Physiol. (2008). https://doi.org/10.1007/s00421-008-0859-7

    Article  Google Scholar 

  111. Barnes, G.R., Benson, A.J., Prior, A.R.: Visual-vestibular interaction in the control of eye movement. Aviat. Space Environ. Med. 49, 557–564 (1978)

    Google Scholar 

  112. DiZio, P., Ekchian, J., Kaplan, J., Ventura, J., Graves, W., Giovanardi, M., Anderson, Z., Lackner, J.R.: an active suspension system for mitigating motion sickness and enabling reading in a car. Aerosp. Med. Hum. Perform. (2018). https://doi.org/10.3357/AMHP.5012.2018

    Article  Google Scholar 

  113. Perrin, P., Lion, A., Bosser, G., Gauchard, G., Meistelman, C.: Motion Sickness in rally car co-drivers. Aviat. Space Environ. Med. (2013). https://doi.org/10.3357/ASEM.3523.2013

    Article  Google Scholar 

  114. Keshavarz, B., Stelzmann, D., Paillard, A., Hecht, H.: Visually induced motion sickness can be alleviated by pleasant odors. Exp. Brain Res. (2015). https://doi.org/10.1007/s00221-015-4209-9

    Article  Google Scholar 

  115. Reavley, C.M., Golding, J.F., Cherkas, L.F., Spector, T.D., MacGregor, A.J.: Genetic influences on motion sickness susceptibility in adult women: a classical twin study. Aviat. Space Environ. Med. 77, 1148–1152 (2006)

    Google Scholar 

  116. Klosterhalfen, S., Kellermann, S., Pan, F., Stockhorst, U., Hall, G., Enck, P.: Effects of ethnicity and gender on motion sickness susceptibility. Aviat. Space Environ. Med. 76, 1051–1057 (2005)

    Google Scholar 

  117. Stern, R.M., Hu, S., LeBlanc, R., Koch, K.L.: Chinese hyper-susceptibility to vection-induced motion sickness. Aviat. Space Environ. Med. 64, 827–830 (1993)

    Google Scholar 

  118. Schmidt, E.A., Kuiper, O.X., Wolter, S., Diels, C., Bos, J.E.: An international survey on the incidence and modulating factors of carsickness. Transport. Res. F Traffic Psychol. Behav. (2020). https://doi.org/10.1016/j.trf.2020.03.012

    Article  Google Scholar 

  119. Turner, M., Griffin, M.J.: Motion sickness in public road transport: passenger behavior and susceptibility. Ergonomics (1999). https://doi.org/10.1080/001401399185586

    Article  Google Scholar 

  120. Henriques, I.F., Douglas de Oliveira, D.W., Oliveira-Ferreira, F., Andrade, P.M.O.: Motion sickness prevalence in school children. Eur. J. Pediatr. (2014). https://doi.org/10.1007/s00431-014-2351-1

  121. Paillard, A.C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J.F., Ghulyan-Bedikian, V.: Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J. Vestib. Res. Equilibr. Orientation (2013). https://doi.org/10.3233/VES-130501

    Article  Google Scholar 

  122. Bos, J.E., Damala, D., Lewis, C., Ganguly, A., Turan, O.: Susceptibility to seasickness. Ergonomics (2007). https://doi.org/10.1080/00140130701245512

    Article  Google Scholar 

  123. Graeber, D.A., Stanney, K.M.: Gender Differences in Visually Induced Motion Sickness. In: Proceedings of the Human Factors and Ergonomics Society 46th Annual Meeting, pp. 2109–2113 (2002)

    Google Scholar 

  124. Rolnick, A., Lubow, R.E.: Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics (1991). https://doi.org/10.1080/00140139108964831

    Article  Google Scholar 

  125. Schmäl, F.: Neuronal mechanisms and the treatment of motion sickness. Pharmacology (2013). https://doi.org/10.1159/000350185

    Article  Google Scholar 

  126. Koch, A., Cascorbi, I., Westhofen, M., Dafotakis, M., Klapa, S., Kuhtz-Buschbeck, J.P.: The Neurophysiology and Treatment of Motion Sickness. Deutsches Arzteblatt international (2018). https://doi.org/10.3238/arztebl.2018.0687

    Article  Google Scholar 

  127. Dobie, T.G.: Motion sickness. A motion adaptation syndrome. Springer, Cham, Switzerland (2019)

    Google Scholar 

  128. Spinks, A., Wasiak, J.: Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane Database Syst. Rev. (2011). https://doi.org/10.1002/14651858.CD002851.pub4

    Article  Google Scholar 

  129. Brainard, A., Gresham, C.: Prevention and treatment of motion sickness. Am. Fam. Physician 90, 41–46 (2014)

    Google Scholar 

  130. Brandt, T., Daroff, R.B.: The multisensory physiological and pathological vertigo syndromes. Ann. Neurol. (1980). https://doi.org/10.1002/ana.410070302

    Article  Google Scholar 

  131. Büttner, U., Büttner-Ennever, J.A.: Present concepts of oculomotor organization. In: Büttner-Ennever, J.A. (ed.) Neuroanatomy of the Oculomotor System. Progress in Brain Research, vol. 151, pp. 1–42. Elsevier, Amsterdam, Oxford (2005)

    MATH  Google Scholar 

  132. Cohen, B., Dai, M., Yakushin, S.B., Cho, C.: The neural basis of motion sickness. J. Neurophysiol. (2019). https://doi.org/10.1152/jn.00674.2018

    Article  Google Scholar 

  133. Hwang, E., Kuhn, S.M., Lange, B.: Motion Sickness. In: Keystone, J.S., Kozarsky, P.E., Connor, B.A., Nothdurft, H.D., Mendelson, M., Leder, K. (eds.) Travel medicine, pp. 423–428. Elsevier, Edinburgh (2019)

    Google Scholar 

  134. Golding, J.F., Wesnes, K.A., Leaker, B.R.: The effects of the selective muscarinic M3 receptor antagonist darifenacin, and of hyoscine (scopolamine), on motion sickness, skin conductance & cognitive function. Br. J. Clin. Pharmacol. (2018). https://doi.org/10.1111/bcp.13579

    Article  Google Scholar 

  135. Matsuoka, I., Ito, J., Takahashi, H., Sasa, M., Takaori, S.: Experimental vestibular pharmacology: a minireview with special reference to neuroactive substances and antivertigo drugs. Acta Otolaryngol. (1985). https://doi.org/10.1080/00016489.1985.12005655

    Article  Google Scholar 

  136. Becker, G., Goossens, H., Seemann, K., Souchon, F., Weitz, T.: Kinetoseprophylaxe mit TTS-Scopolamin. Eine randomisierte, vergleichende Doppelblindstudie bei der Bundesmarine (Prevention of motion sickness with a transdermal therapeutic system containing scopolamine. A randomized, comparative double-blind study in the German Federal Navy). Deut. Med. Wochenschr. (1984). https://doi.org/10.1055/s-2008-1069472

  137. Murray, J.B.: Psychophysiological aspects of motion sickness. Percept. Mot. Skills (1997). https://doi.org/10.2466/pms.1997.85.3f.1163

    Article  Google Scholar 

  138. Price, N.M., Schmitt, L.G., McGuire, J., Shaw, J.E., Trobough, G.: Transdermal scopolamine in the prevention of motion sickness at sea. Clin. Pharmacol. Ther. (1981). https://doi.org/10.1038/clpt.1981.57

    Article  Google Scholar 

  139. Qi, R., Su, Y., Pan, L., Mao, Y., Liang, L., Dai, Z., Wang, J., Cai, Y.: Anti-cholinergics mecamylamine and scopolamine alleviate motion sickness-induced gastrointestinal symptoms through both peripheral and central actions. Neuropharmacology (2019). https://doi.org/10.1016/j.neuropharm.2018.12.006

    Article  Google Scholar 

  140. Nachum, Z., Shahal, B., Shupak, A., Spitzer, O., Gonen, A., Beiran, I., Lavon, H., Eynan, M., Dachir, S., Levy, A.: Scopolamine Bioavailability in Combined Oral and Transdermal Delivery. J. Pharmacol. Exp. Ther. 296, 121 (2001)

    Google Scholar 

  141. Klöcker, N., Hanschke, W., Toussaint, S., Verse, T.: Scopolamine nasal spray in motion sickness: a randomised, controlled, and crossover study for the comparison of two scopolamine nasal sprays with oral dimenhydrinate and placebo. Eur. J. Pharm. Sci. (2001). https://doi.org/10.1016/S0928-0987(01)00107-5

    Article  Google Scholar 

  142. Lakstygal, A.M., Kolesnikova, T.O., Khatsko, S.L., Zabegalov, K.N., Volgin, A.D., Demin, K.A., Shevyrin, V.A., Wappler-Guzzetta, E.A., Kalueff, A.V.: DARK classics in chemical neuroscience: atropine, scopolamine, and other anticholinergic deliriant hallucinogens. ACS Chem. Neurosci. (2019). https://doi.org/10.1021/acschemneuro.8b00615

    Article  Google Scholar 

  143. Prado, V.F., Janickova, H., Al-Onaizi, M.A., Prado, M.A.M.: Cholinergic circuits in cognitive flexibility. Neuroscience (2017). https://doi.org/10.1016/j.neuroscience.2016.09.013

    Article  Google Scholar 

  144. Lindner, M., Bell, T., Iqbal, S., Mullins, P.G., Christakou, A.: In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention. PLoS ONE (2017). https://doi.org/10.1371/journal.pone.0171338

    Article  Google Scholar 

  145. Karrim, N., Magula, N., Saman, Y.: Antihistamines for motion sickness. Cochrane Database Syst. Rev. (2017). https://doi.org/10.1002/14651858.CD012715

    Article  Google Scholar 

  146. Valoti, M., Frosini, M., Dragoni, S., Fusi, F., Sgaragli, G.: Pharmacokinetics of diphenhydramine in healthy volunteers with a dimenhydrinate 25 mg chewing gum formulation. Methods Find. Exp. Clin. Pharmacol. (2003). https://doi.org/10.1358/mf.2003.25.5.769660

    Article  Google Scholar 

  147. Zajonc, T.P., Roland, P.S.: Vertigo and motion sickness. Part II: Pharmacologic Treatment. Ear Nose Throat J. (2006). https://doi.org/10.1177/014556130608500110

  148. Kohl, R.L., Lewis, M.R.: Mechanisms underlying the antimotion sickness effects of psychostimulants. Aviat. Space Environ. Med. 58, 1215–1218 (1987)

    Google Scholar 

  149. Zhang, L.-L., Wang, J.-Q., Qi, R.-R., Pan, L.-L., Li, M., Cai, Y.-L.: Motion Sickness: current knowledge and recent advance. CNS Neurosci. Ther. (2016). https://doi.org/10.1111/cns.12468

    Article  Google Scholar 

  150. Diaz-Artiles, A., Priesol, A.J., Clark, T.K., Sherwood, D.P., Oman, C.M., Young, L.R., Karmali, F.: The impact of oral promethazine on human whole-body motion perceptual thresholds. J. Assoc. Res. Otolaryngol. JARO (2017). https://doi.org/10.1007/s10162-017-0622-z

    Article  Google Scholar 

  151. Cowings, P.S., Toscano, W.B., DeRoshia, C., Miller, N.E.: Promethazine as a motion sickness treatment: impact on human performance and mood states. Aviat. Space Environ. Med. 71, 1013–1022 (2000)

    Google Scholar 

  152. Takeda, N., Morita, M., Horii, A., Nishiike, S., Kitahara, T., Uno, A.: Neural mechanisms of motion sickness. J. Med. Invest. JMI 48, 44–59 (2001)

    Google Scholar 

  153. Furman, J.M., Marcus, D.A., Balaban, C.D.: Rizatriptan reduces vestibular-induced motion sickness in migraineurs. J. Headache Pain (2011). https://doi.org/10.1007/s10194-010-0250-z

    Article  Google Scholar 

  154. González-Hernández, A., Marichal-Cancino, B.A., MaassenVanDenBrink, A., Villalón, C.M.: Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opin. Drug Metab. Toxicol. (2018). https://doi.org/10.1080/17425255.2018.1416097

    Article  Google Scholar 

  155. Wood, C.D., Stewart, J.J., Wood, M.J., Struve, F.A., Straumanis, J.J., Mims, M.E., Patrick, G.Y.: Habituation and motion sickness. J. Clin. Pharmacol. (1994). https://doi.org/10.1002/j.1552-4604.1994.tb02016.x

    Article  Google Scholar 

  156. Dai, M., Raphan, T., Cohen, B.: Prolonged reduction of motion sickness sensitivity by visual-vestibular interaction. Exp. Brain Res. (2011). https://doi.org/10.1007/s00221-011-2548-8

    Article  Google Scholar 

  157. Ressiot, E., Dolz, M., Bonne, L., Marianowski, R.: Prospective study on the efficacy of optokinetic training in the treatment of seasickness. Eur. Ann. Otorhinolaryngol. Head Neck Dis. (2013). https://doi.org/10.1016/j.anorl.2012.03.009

  158. Murdin, L., Golding, J.F., Bronstein, A.: Managing motion sickness. BMJ (2011). https://doi.org/10.1136/bmj.d7430

  159. Williamson, M.J., Thomas, M.J., Stern, R.M.: The contribution of expectations to motion sickness symptoms and gastric activity. J. Psychosom. Res. (2004). https://doi.org/10.1016/S0022-3999(03)00130-2

    Article  Google Scholar 

  160. Levine, M.E., Stern, R.M., Koch, K.L.: The effects of manipulating expectations through placebo and nocebo administration on gastric tachyarrhythmia and motion-induced nausea. Psychosom. Med. (2006). https://doi.org/10.1097/01.psy.0000221377.52036.50

    Article  Google Scholar 

  161. Levine, M.E., Stern, R.M., Koch, K.L.: Enhanced perceptions of control and predictability reduce motion-induced nausea and gastric dysrhythmia. Exp. Brain Res. (2014). https://doi.org/10.1007/s00221-014-3950-9

    Article  Google Scholar 

  162. Russell, M.E.B., Hoffman, B., Stromberg, S., Carlson, C.R.: Use of controlled diaphragmatic breathing for the management of motion sickness in a virtual reality environment. Appl. Psychophysiol. Biofeedback (2014). https://doi.org/10.1007/s10484-014-9265-6

    Article  Google Scholar 

  163. Yen Pik Sang, F., Billar, J., Gresty, M.A., Golding, J.F.: Effect of a novel motion desensitization training regime and controlled breathing on habituation to motion sickness. Percept. Motor Skills (2005). https://doi.org/10.2466/pms.101.1.244-256

  164. Yen Pik Sang, F., Billar, J.P., Golding, J.F., Gresty, M.A.: Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape. J. Travel Med. (2003). https://doi.org/10.2310/7060.2003.31768

  165. Hajek, W., Gaponova, I., Fleischer, K.H., Krems, J.: Workload-adaptive cruise control—a new generation of advanced driver assistance systems. Transport. Res. F Traffic Psychol. Behav. (2013). https://doi.org/10.1016/j.trf.2013.06.001

    Article  Google Scholar 

  166. Reinmueller, K., Steinhauser, M.: Adaptive forward collision warnings: the impact of imperfect technology on behavioral adaptation, warning effectiveness and acceptance. Accid. Anal. Prev. (2019). https://doi.org/10.1016/j.aap.2019.04.012

    Article  Google Scholar 

  167. Salter, S., Kanarachos, S., Thake, C.D., Diels, C.: Motion sickness prediction device for automated vehicles. Int. J. Mech. Prod. Eng. 7, 68–74 (2019)

    Google Scholar 

  168. Salter, S., Diels, C., Herriotts, P., Kanarachos, S., Thake, D.: Motion sickness in automated vehicles with forward and rearward facing seating orientations. Appl. Ergon. (2019). https://doi.org/10.1016/j.apergo.2019.02.001

    Article  Google Scholar 

  169. Bos, J.E., MacKinnon, S.N., Patterson, A.: Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat. Space Environ. Med. 76, 1111–1118 (2005)

    Google Scholar 

  170. Feenstra, P.J., Bos, J.E., van Gent, R.N.H.W.: A visual display enhancing comfort by counteracting airsickness. Displays (2011). https://doi.org/10.1016/j.displa.2010.11.002

    Article  Google Scholar 

  171. Karjanto, J., Md. Yusof, N., Wang, C., Terken, J., Delbressine, F., Rauterberg, M.: The effect of peripheral visual feedforward system in enhancing situation awareness and mitigating motion sickness in fully automated driving. Transp. Res. Part F: Traffic Psychol. Behav. (2018). https://doi.org/10.1016/j.trf.2018.06.046

  172. Kuiper, O.X., Bos, J.E., Diels, C., Schmidt, E.A.: Knowing what’s coming: anticipatory audio cues can mitigate motion sickness. Appl. Ergon. (2020). https://doi.org/10.1016/j.apergo.2020.103068

    Article  Google Scholar 

  173. Bertolini, G., Durmaz, M.A., Ferrari, K., Küffer, A., Lambert, C., Straumann, D.: determinants of motion sickness in tilting trains: coriolis/cross-coupling stimuli and tilt delay. Front. Neurol. (2017). https://doi.org/10.3389/fneur.2017.00195

    Article  Google Scholar 

  174. Keshavarz, B., Hecht, H.: Pleasant music as a countermeasure against visually induced motion sickness. Appl. Ergon. (2014). https://doi.org/10.1016/j.apergo.2013.07.009

    Article  Google Scholar 

  175. Golding, J.F.: Motion sickness susceptibility and management at sea. In: MacLachlan, M. (ed.) Maritime Psychology, vol. 17, pp. 151–183. Springer International Publishing, Cham (2017)

    Google Scholar 

  176. D’Amour, S., Bos, J.E., Keshavarz, B.: The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Exp. Brain Res. (2017). https://doi.org/10.1007/s00221-017-5009-1

    Article  Google Scholar 

  177. Keshavarz, B.: Exploring Behavioral Methods to Reduce Visually Induced Motion Sickness in Virtual Environments. In: Lackey, S., Shumaker, R. (eds.) Virtual, Augmented and Mixed Reality, Cham, 2016, pp. 147–155. Springer International Publishing, Cham (2016)

    Google Scholar 

  178. Kuiper, O.X., Bos, J.E., Diels, C.: Looking forward: In-vehicle auxiliary display positioning affects carsickness. Appl. Ergon. (2018). https://doi.org/10.1016/j.apergo.2017.11.002

    Article  Google Scholar 

  179. Diels, C., Bos, J.E.: User interface considerations to prevent self-driving carsickness. In: Burnett, G., Gabbard, J., Green, P., Osswald, S. (eds.) Adjunct Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications—AutomotiveUI ‘15. Adjunct the 7th International Conference, Nottingham, United Kingdom, 01/09/2015–03/09/2015, pp. 14–19. ACM Press, New York, New York, USA (2015). https://doi.org/10.1145/2809730.2809754

  180. Miksch, M., Steiner, M., Miksch, M., Meschtscherjakov, A.: Motion Sickness Prevention System (MSPS). In: Green, P., Pfleging, B., Kun, A.L., Liang, Y., Meschtscherjakov, A., Fröhlich, P. (eds.) Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct. Automotive'UI 16, Ann Arbor, MI, 24.10.2016–26.10.2016, pp. 147–152. ACM Press, New York (2016). https://doi.org/10.1145/3004323.3004340

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Kirst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirst, L., Ernst, B., Kern, A., Steinhauser, M. (2022). The Problem of Motion Sickness and Its Implications for Automated Driving. In: Riener, A., Jeon, M., Alvarez, I. (eds) User Experience Design in the Era of Automated Driving. Studies in Computational Intelligence, vol 980. Springer, Cham. https://doi.org/10.1007/978-3-030-77726-5_6

Download citation

Publish with us

Policies and ethics