Skip to main content

Monitoring the Activity of Industrial Facilities Using Satellite Images of the Heat IR Range

  • Conference paper
  • First Online:
Informatics and Cybernetics in Intelligent Systems (CSOC 2021)

Abstract

The results of the development and testing of the methodology for automated processing of satellite images of medium spatial resolution in the heat and short-wave IR range are presented. For the specified test areas, digital maps of the Earth’s surface temperature were obtained for the territories where oil refineries and chemical plants are concentrated. A comparative analysis of the results of automated recognition of heat radiation sources showed a fairly high degree of correlation between the results of processing images of the heat IR range and the results of processing images of the short-wave IR range. We also compared the results of automated recognition of heat radiation sources based on images of the same territory taken from different satellites at different times. The results of testing the proposed methodology confirmed the possibility and high efficiency of using night images from the Terra satellite (ASTER survey instrument) and from the Landsat-8 satellite (TIRS survey instrument) to monitor the production activity of large industrial facilities that are sources of heat radiation. #CSOC1120

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hnatushenko, V.V., Hnatushenko, V.V., Mozgovoy, D.K., Vasiliev, V.V.: Satellite technology of the forest fires effects monitoring. Sci. Bull. Nat. Min. Univ. 1, 70–77 (2016)

    Google Scholar 

  2. Mozgovoy, D.K., Kapulin, D.V., Svinarenko, D.N., Sablinskii, A.I., Yamskikh, T.N., Tsarev, R.Y.: Automated detection of anthropogenic changes in municipal infrastructure with satellite sub-meter resolution imagery. In: Silhavy, R. (ed.) Applied Informatics and Cybernetics in Intelligent Systems. AISC, vol. 1226, pp. 362–370. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51974-2_35

    Chapter  Google Scholar 

  3. Hnatushenko, V.V., Mozgovoy, D.K., Hnatushenko, V.V., Spirintsev, V.V., Udovyk, I.M.: All-weather monitoring of oil and gas production areas using satellite data. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, 137–143 (2019). https://doi.org/10.29202/nvngu/2019-6/20

    Article  Google Scholar 

  4. Duda, K., Daucsavage, J., Siemonsma, D., Brooks, B., Oleson, R., Meyer, D.: AST_L1T Product User’s Guide. Version 1.0 8. (2015)

    Google Scholar 

  5. Li, Z.L., et al.: Satelliteederived land surface temperature: current status and perspectives. Remote Sens. Environ. 131(12), 14–37 (2013)

    Article  Google Scholar 

  6. Schott, J.R., et al.: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010). Remote Sens. Environ. 122, 41–49 (2012)

    Article  Google Scholar 

  7. Chander, G., Markham, B.L., Helder, D.L.: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 113(5), 893–903 (2009)

    Article  Google Scholar 

  8. Coll, C., Galve, J.M., Sinchez, J.M., Caselles, V.: Validation of Landsatt7/ETM+ thermal band calibration and atmospheric correction with grounddbased measurements. IEEE Trans. Geosci. Remote Sens. 48(1), 547–555 (2010)

    Article  Google Scholar 

  9. Jimenezz Munoz, J.C., et al.: Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. Geosci. Remote Sens. Lett. 11(10), 1840–1843 (2014)

    Google Scholar 

  10. Reuter, D.C., et al.: The Thermal Infrared Sensor (TIRS) on Landsat 8: design overview and pre-launch characterization. Remote Sens. 7(1), 1135–1153 (2015)

    Article  Google Scholar 

  11. Montanaro, M., Gerace, A., Lunsford, A., Reuter, D.: Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor. Remote Sens. 6, 10435–10456 (2014)

    Article  Google Scholar 

  12. Blackett, M.: Early analysis of Landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sens. 6(3), 2282–2295 (2014)

    Article  Google Scholar 

  13. Moore, G., Paine, R.: Quantifying Urban-Rural Temperature Differences for Industrial Complexes Using Thermal Satellite Data. AECOM (2014)

    Google Scholar 

  14. Roozenstein, O., Qin, Z., Derimian, Y., Karnieli, A.: Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 14(4), 5768–5780 (2014)

    Article  Google Scholar 

  15. Perez Hoyos, I.C.: Comparison between land surface temperature retrieval using classification-based emissivity and NDVI based emissivity. Int. J. Recent Dev. Eng. Technol. 2(2), 26–30 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mozgovoy, D. et al. (2021). Monitoring the Activity of Industrial Facilities Using Satellite Images of the Heat IR Range. In: Silhavy, R. (eds) Informatics and Cybernetics in Intelligent Systems. CSOC 2021. Lecture Notes in Networks and Systems, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-030-77448-6_51

Download citation

Publish with us

Policies and ethics