Skip to main content

The Properties of Multistep Runge-Kutta Methods for Neutral Delay Differential Equations

  • Conference paper
  • First Online:
Software Engineering and Algorithms (CSOC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 230))

Included in the following conference series:

  • 962 Accesses

Abstract

This paper is devoted to the stability and convergence analysis of the multistep Runge-Kutta methods with the Lagrange interpolation of the numerical solution for a nonlinear neutral delay differential equations. Nonlinear stability and D-Convergence are introduced and proved. We discuss both the GR(l)–stability, GAR(l)-stability, and the weak GAR(l)-stability on the basis of (k, l)-algebraically stable of the multistep RK methods, we also discuss the D-convergence properties of multistep RK methods with a restricted type of interpolation procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weldon, T.E., Kirk, J., Finlay, H.M.: Cyclical granulopoiesis in chronic granulocytic leukemia: a simulation study. Blood 43, 379–387 (1974)

    Article  Google Scholar 

  2. Ruehli, A.E., Miekkala, U., Bellen, A., Heeb, H.: Stable time domain solutions for EMC problems using PEEC circuit models. In: Proceedings of IEEE Int. Symposium on Electromagnetic Compatibility (1994)

    Google Scholar 

  3. Brayton, R.K.: Small signal stability criterion for networks containing lossless transmission lines. IBM J. Res. Dev. 12, 431–440 (1968)

    Article  Google Scholar 

  4. Guglielmi, N.: Inexact Newton methods for the steady-state analysis of nonlinear circuits. Math. Models Meth. Appl. Sci. 6(1), 43–57 (1996)

    Article  MathSciNet  Google Scholar 

  5. Kuang, Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, Boston (1993)

    MATH  Google Scholar 

  6. Bellen, A., Guglielmi, N., Zennaro, M.: On the contractivity and asymptotic stability of systems of delay differential equations of neutral type. BIT 39, 1–24 (1999)

    Article  MathSciNet  Google Scholar 

  7. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  8. Kuang, J.X., Xiang, J.X., Tian, H.J.: The asymptotic stability of one-parameter methods for neutral differential equations. BIT 34, 400–408 (1994)

    Article  MathSciNet  Google Scholar 

  9. Qiu, L., Yang, B., Kuang, J.X.: The NGP-stability of Runge-Kutta methods for systems of neutral delay differential equations. Numer. Math. 81(3), 451–459 (1999)

    Article  MathSciNet  Google Scholar 

  10. Tian, H.J., Kuang, J.X., Qiu, L.: The stability of linear multistep methods for linear systems of neutral differential equation. J. Comput. Math. 19, 125–130 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, C.J., Zhou, S.Z.: The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay differential equations. Sci. China 41, 504–515 (1998)

    Article  MathSciNet  Google Scholar 

  12. Torelli, L.: Stability of numerical methods for delay differential equations. J. Comput. Appl. Math. 25, 15–26 (1989)

    Article  MathSciNet  Google Scholar 

  13. Torelli, L.: A sufficient condition for GPN-stability for delay differential equations. Numer. Math. 59, 311–320 (1991)

    Article  MathSciNet  Google Scholar 

  14. Bellen, A.: Contractivity of continuous Runge-Kutta methods for delay differential equations. Appl. Numer. Math. 24, 219–232 (1997)

    Article  MathSciNet  Google Scholar 

  15. Bellen, A., Zennaro, M.: Strong contractivity properties of numerical methods for ordinary and delay differential equations. Appl. Numer. Math. 9, 321–346 (1992)

    Article  MathSciNet  Google Scholar 

  16. Zennaro, M.: Contractivity of Runge-Kutta methods with respect to forcing terms. Appl. Numer. Math. 10, 321–345 (1993)

    Article  MathSciNet  Google Scholar 

  17. Koto, T.: The stability of natural Runge-Kutta methods for nonlinear delay differential equations. J. Ind. Appl. Math. 14, 111–123 (1997)

    Article  MathSciNet  Google Scholar 

  18. Bellen, A., Guglielmi, N., Zennaro, M.: Numerical stability of nonlinear delay differential equations of neutral type. J. Comput. Appl. Math. 125, 251–263 (2000)

    Article  MathSciNet  Google Scholar 

  19. Jackiewicz, Z.: One-step methods of any order for neutral functional differential equations. SIAM J. Numer. Anal 21, 486–511 (1984)

    Article  MathSciNet  Google Scholar 

  20. Jackiewicz, Z.: Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equations. SIAM J. Numer. Anal 23, 423–452 (1986)

    Article  MathSciNet  Google Scholar 

  21. Jackiewicz, Z., Kwapisz, M., Lo, E.: Waveform relaxation methods for functional differential systems of neutral type. J. Math. Appl. Anal 207, 255–285 (1997)

    Article  MathSciNet  Google Scholar 

  22. Yang, R.N., Gao, H.J., Shi, P.: Novel robust stability criteria for stochastic Hopfield neural networks with time delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(11), 467–474 (2009)

    Article  Google Scholar 

  23. Yang, R.N., Zhang, Z.X., Shi, P.: Exponential stability on stochastic neural networks with discrete interval and distributed delays. IEEE Trans. Neural Netw. 21(1), 169–175 (2010)

    Article  Google Scholar 

  24. Liu, L.P.: Robust stability for neutral time-varying delay systems with non-linear perturbations. Int. J. Innov. Comput. Inf. Control 17(10), 5749–5760 (2011)

    Google Scholar 

  25. Tanikawa, A.: On stability of the values of random zero-sum games. Int. J. Innov. Comput. Inf. Control 7(1), 133–140 (2011)

    Google Scholar 

  26. Basin, M., Calderon-Alvarez, D.: Delay-dependent stability for vector nonlinear stochastic systems with multiple delays. Int. J. Innov. Comput. Inf. Control 7(4), 1565–1576 (2011)

    Google Scholar 

  27. Stetter, H.J.: Numerische Losung von Differential gleichungen mit nacheilendem Argument. ZAMM 45, 79–80 (1965)

    Article  Google Scholar 

  28. Oberle, H.J., Pesch, H.J.: Numerical treatment of delay differential equations by Hermite interpolation. Numer. Math. 37, 235–255 (1981)

    Article  MathSciNet  Google Scholar 

  29. Zennaro, M.: Natural continuous extensions of Runge-Kutta methods. Math. Comp. 46, 119–133 (1986)

    Article  MathSciNet  Google Scholar 

  30. Huang, C.M.: Algebraic stability of hybrid methods. Chin. J. Num. Math. Appl. 17, 67–74 (1995)

    MathSciNet  Google Scholar 

  31. Li, S.F.: Theory of Computational Methods for Stiff Differential Equations. Hunan Science and Technology Publisher, Changsha (1997)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for giving helpful comments and suggestions. This research is supported by National Natural Science Foundation of China (Project No.11901173) and by the Heilongjiang province Natural Science Foundation (LH2019A030) and by the Innovation Talent Foundation of Heilongjiang institute of technology (2018CX17).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Yuan, H. (2021). The Properties of Multistep Runge-Kutta Methods for Neutral Delay Differential Equations. In: Silhavy, R. (eds) Software Engineering and Algorithms. CSOC 2021. Lecture Notes in Networks and Systems, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-030-77442-4_57

Download citation

Publish with us

Policies and ethics