Skip to main content

Exudate Gums

  • Living reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 29 Accesses

Abstract

Gums are high molecular weight polysaccharides that form a gel with water. Exudate gums are obtained from the plants and are named so because these gums ooze out from the tree bark on the physical injury on it. Exudate gums are very beneficial to human beings and are greatly been used since ancient times. Due to their gel-forming property and water-binding activities, these gums are used in several food and non-food applications. These are used in various industries such as pharma, food, textile, paper, cosmetics, etc. This chapter discusses the physical and chemical properties, applications, and health benefits of exudate gums.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

cP:

Centi poise

FDA:

Food and Drug Administration

GRAS:

Generally recognized as safe

HLB:

Hydrophilic–lipophilic balance

KDa:

Kilo Dalton (1000 Dalton)

LBG:

Locust bean gum

NMR:

Nuclear Magnetic Resonance

PDI:

Polydispersity index

RTE:

Ready-to-eat

References

  1. Mudgil D, Barak S, Khatkar BS (2012) Process optimization of partially hydrolyzed guar gum using response surface methodology. Agro Food Ind Hi-Tech 23:13–15

    CAS  Google Scholar 

  2. Mudgil D, Barak S, Khatkar BS (2012) Soluble fiber and cookie quality. Agro Food Ind Hi-Tec 23:15–17

    CAS  Google Scholar 

  3. Mudgil D, Barak S, Khatkar BS (2011) Effect of hydrocolloids on the quality characteristics of tomato ketchup. Carpathian J Food Sci Technol 3:39–43

    Google Scholar 

  4. Barak S, Mudgil D (2014) Locust bean gum: processing, properties, and food applications – a review. Int J BiolMacromol 66:74–80

    Article  CAS  Google Scholar 

  5. Mudgil D (2018) Partially hydrolyzed guar gum: preparation and properties. In: Gutierrez TJ (ed) Polymers for food applications. Springer, Cham, pp 529–549

    Chapter  Google Scholar 

  6. Barak S, Mudgil D (2020) Effect of guar fiber on physicochemical, textural, and sensory properties of sweetened strained yogurt. Biointerface Res Appl Chem 10:5564–5568

    Article  CAS  Google Scholar 

  7. Barak S, Mudgil D, Taneja S (2020) Exudate gums: chemistry, properties, and food applications–a review. J Sci Food Agric 100:2828–2835

    Article  CAS  Google Scholar 

  8. Mudgil D, Barak S (2020) Mesquite gum (Prosopis gum): structure, properties & applications-a review. Int J BiolMacromol 159:1094–1102

    Article  CAS  Google Scholar 

  9. Mudgil D, Barak S (2019) Classification, technological properties, and sustainable sources. In: Galankis CM (ed) Dietary fiber: properties, recovery, and applications. Academic Press, Burlington, pp 27–58

    Chapter  Google Scholar 

  10. Izydorczyk M, Cui SW, Wang Q (2005) Polysaccharide gums: structures, functional properties, and applications. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties, and applications. CRC Press, Boca Raton, pp 299–344

    Google Scholar 

  11. Gundidza M, Mmbengwa V, Sibambo SR, Magwa ML, Mushisha O, Benhura MA, Gundidza E, Samie A (2011) Rheological, moisture and ash content analyses of a gum resin from CommiphoraAfricana. Afr J Food Sci 5:188–193

    CAS  Google Scholar 

  12. Wang W, Anderson DMW (1994) Non-food applications of tree gum exudates. Chem Ind Forest Prod 14:67–76

    Google Scholar 

  13. Glicksman M (1969) Gum technology in the food industry. Academic Press, New York

    Google Scholar 

  14. Ali BH, Ziada A, Blunden G (2009) Biological effects of gum arabic: are view of some recent research. Food Chemical Toxicol 47:1–8

    Article  CAS  Google Scholar 

  15. Sanchez C, Renard D, Robert P, Schmitt C, Lefebvre J (2002) Structure andrheological properties of Acacia gum dispersions. Food Hydrocoll 16:257–267

    Article  CAS  Google Scholar 

  16. Draget K (2000) Alginates. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Boca Raton, pp 807–828

    Google Scholar 

  17. Kennedy JF, Phillips GO, Williams PA (2011) Gum arabic, vol 333. Royal Society of Chemistry, London, pp 1–345

    Book  Google Scholar 

  18. Verbeken D, Dierckx S, Dewettinck K (2003) Exudate gums: occurrence,production, and applications. Appl Microbiol Biotechnol 63:10–21

    Article  CAS  Google Scholar 

  19. Stephen AM (1990) Structure and properties of exudate gums. In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilizers for the food industry. Oxford University Press, Oxford, pp 3–16

    Google Scholar 

  20. Shishir MR, Chen W (2017) Trends of spray drying: a critical review on dryingof fruit and vegetable juices. Trends Food Sci Technol 65:49–67

    Article  CAS  Google Scholar 

  21. Aggarwal P, Kumar V, Yaqoob M, Kaur S, Babbar N (2020) Effect of different levels of hydrocolloids on viscosity and cloud stability of kinnow juice and beverages. J Food Process Preserv 44:1–9

    Article  Google Scholar 

  22. Tuan Azlan TN, Hamzah Y, AbdMajid HA (2020) Effect of gum arabic (Acaciasenegal) addition on physicochemical properties and sensory acceptability of roselle juice. Food Res 4:449–458

    Article  Google Scholar 

  23. Yakubu HN, Jibril LH, Tukur LB (2021) An overview of the importance of gum arabic exudates to food industry. Bakolori J Gen Stud 11: 3187–3200

    Google Scholar 

  24. McNamee BF, O'Riorda ED, O'Sullivan M (1998) Emulsification and microencapsulation properties of gum arabic. J Agric Food Chem 46:4551–4555

    Article  CAS  Google Scholar 

  25. Zhang C, Quek SY, Fu N, Liu B, Kilmartin PA, Chen XD (2019) A study on the structure formation and properties of noni juice microencapsulated with maltodextrin and gum Acacia using single droplet drying. Food Hydrocolloids 88:199–209

    Google Scholar 

  26. Renard D, Lavenant-Gourgeon L, Ralet MC, Sanchez C (2006) AcaciaSenegal gum: continuum of molecular species differing by their proteinto sugar ratio, molecular weight, and charges. Biomacromolecules 7:2637–2649

    Google Scholar 

  27. Whistler RL (1993) Exudate gums. In: Whistler RL, BeMiller J (eds) Industrial gums, polysaccharides and their derivatives. Academic Press, New York, pp 309–339

    Google Scholar 

  28. Nejatian M, Abbasi S, Azarikia F (2020) Gum tragacanth: structure, characteristics and applications in foods. Int J Biol Macromol 160:846–860

    Article  CAS  Google Scholar 

  29. Tischer CA, IacominiM GPAJ (2002) Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer). Carbohydr Res 337:1647–1655

    Article  CAS  Google Scholar 

  30. Mohammadifar MA, Musavi SM, Kiumarsi A, Williams PA (2006) Solution properties of tragacanthin (water-soluble part of gumtragacanth exudates from Astragalus gossypinus). Int J Biol Macromol 38:31–39

    Article  CAS  Google Scholar 

  31. Chenlo F, Moreira R, Silva C (2010) Rheological behavior of aqueous systems of tragacanth and guar gums with storage time. J Food Eng 96:107–113

    Article  Google Scholar 

  32. Wareing MV (1997) Exudate gums. In: Imeson A (ed) Thickening and gelling agents for food. Blackie, London, pp 86–118

    Chapter  Google Scholar 

  33. Glicksman M (1982) Gum tragacanth. In: Glicksman M (ed) Food hydrocolloids. CRC Press, Boca Raton, pp 49–59

    Google Scholar 

  34. Lopez-Franco Y, Higuera-Ciapara I, Goycoolea FM, Wang W (2009) Other exudates: tragancanth, karaya, mesquite gum and larch wood arabinogalactan. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Boca Raton, pp 495–534

    Chapter  Google Scholar 

  35. Weiping W (2000) Tragacanth and karaya. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing, Cambridge, pp 231–246

    Google Scholar 

  36. Le Cerf D, Irinei F, Muller G (1990) Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydr Polym 13:375–386

    Article  Google Scholar 

  37. Al-Assaf S, Phillips GO, Amar V (2009) Gum ghatti. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press, Boca Raton, pp 477–494

    Chapter  Google Scholar 

  38. Kang J, Cui SW, Chen J, Phillips GO, Wu Y, Wang Q (2011) New studies on gum ghatti (Anogeissus latifolia) part I. fractionation, chemical and physical characterization of the gum. Food Hydrocoll 25:1984–1990

    Article  CAS  Google Scholar 

  39. Jefferies M, Konadu EY, Pass G (1982) Cation effects on the viscosity of gum ghatti. J Sci Food Agric 33:1152–1159

    Article  CAS  Google Scholar 

  40. Al-Assaf S, Amar V, Phillips GO (2008) Characterisation of gum ghatti and comparison with gum arabic. In: Williams PA, Phillips GO (eds) Gums and stabilisers for the food industry. Royal Society of Chemistry, Wrexham, pp 280–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mudgil, D., Barak, S. (2022). Exudate Gums. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics