Skip to main content

Advances in Artificial Olfaction Systems: Obviously Artificial, Somewhat Olfactive

  • Chapter
  • First Online:
Olfaction: An Interdisciplinary Perspective from Philosophy to Life Sciences

Part of the book series: Human Perspectives in Health Sciences and Technology ((HPHST,volume 4))

  • 352 Accesses

Abstract

Artificial olfaction systems have been analyzed since many years but only recently we are facing advances able to enlarge their horizons. Even if the performances of natural olfaction are of course superior with respect to the artificial one, the potentialities of the latter as innovative, non invasive and objective measure instrument are enormous. Electronic nose has indeed the ambition of resolving the interpretative ambiguity of the chemical signal giving a numerical, objective, output obtained via a non-invasive approach (like natural olfaction does). This approach represents a great opportunity for diagnostic purpose. So far, existing technology, did not reach a breakthrough. This paper introduces new directions as suggestions for further developments oriented to enlarge olfaction strategy taking into account aspects related to new trends in informatics and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amann, A., W. Miekisch, J. Schubert, B. Buszewski, T. Ligor, T. Jezierski, J. Pleil, and T. Risby. 2014. Analysis of exhaled breath for disease detection. Annual Review of Analytical Chemistry 7: 455–482.

    Article  Google Scholar 

  • Amor, R.E., M.K. Nakhleh, O. Barash, and H. Haick. 2019. Breath analysis of cancer in the present and the future. European Respiratory Review 28 (152).

    Google Scholar 

  • Bindra, P., and A. Hazra. 2018. Capacitive gas and vapor sensors using nanomaterials. Journal of Materials Science: Materials in Electronics 29 (8): 6129–6148.

    Google Scholar 

  • Brinkman, P., A.H. Maitland-van der Zee, and A.H. Wagener. 2019. Breathomics and treatable traits for chronic airway diseases. Current Opinion in Pulmonary Medicine 25 (1): 94–100.

    Article  Google Scholar 

  • D’Amico, A., C. Di Natale, R. Paolesse, A. Macagnano, E. Martinelli, G. Pennazza, et al. 2008. Olfactory systems for medical applications. Sensors and Actuators B: Chemical 130 (1): 458–465.

    Article  Google Scholar 

  • D’Amico, A., C. Di Natale, and P.M. Sarro. 2015. Ingredients for sensors science. Sensors and Actuators B: Chemical 207: 1060–1068.

    Article  Google Scholar 

  • D’Amico, A., and C. Di Natale. 2001. A contribution on some basic definitions of sensors properties. IEEE Sensors Journal 1 (3): 183–190.

    Article  Google Scholar 

  • D’Amico, A., G. Ferri, and A. Zompanti. 2019. Sensor systems for breathprinting: A review of the current technologies for exhaled breath analysis based on a sensor array with the aim of integrating them in a standard and shared procedure. In Breath analysis, 49–79. Academic.

    Chapter  Google Scholar 

  • Dey, A. 2018. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B 229: 206–217.

    Article  Google Scholar 

  • Dwivedi, R.K., N. Kumari, and R. Kumar. 2020. Integration of wireless sensor networks with cloud towards efficient management in IoT: A review. In Advances in data and information sciences, 97–107. Singapore: Springer.

    Chapter  Google Scholar 

  • Falconi, C., E. Martinelli, C. Di Natale, A. D’Amico, F. Maloberti, P. Malcovati, et al. 2007. Electronic interfaces. Sensors and Actuators B: Chemical 121 (1): 295–329.

    Article  Google Scholar 

  • Forouhi, S., R. Dehghani, and E. Ghafar-Zadeh. 2019. CMOS based capacitive sensors for life science applications: A review. Sensors and Actuators A: Physical 297: 111531.

    Article  Google Scholar 

  • Fraden, J. 2004. Handbook of modern sensors: Physics, designs, and applications. Springer.

    Google Scholar 

  • Gardner, J.W., and P.N. Bartlett. 1994. A brief history of electronic noses. Sensors and Actuators B: Chemical 18 (1–3): 210–211.

    Article  Google Scholar 

  • Gómez-Ramírez, E., L.A. Maeda-Nunez, L.C. Álvarez-Simón, and F.G. Flores-García. 2019. A highly robust interface circuit for resistive sensors. Electronics 8 (3): 263.

    Article  Google Scholar 

  • Gongora, A., and J. Gonzalez-Jimenez. 2019. Olfactory telerobotics. A feasible solution for teleoperated localization of gas sources? Robotics and Autonomous Systems 113: 1–9.

    Article  Google Scholar 

  • Haick, H., Y.Y. Broza, P. Mochalski, V. Ruzsanyi, and A. Amann. 2014. Assessment, origin, and implementation of breath volatile cancer markers. Chemical Society Reviews 43 (5): 1423–1449.

    Article  Google Scholar 

  • Henderson, B., D.M. Ruszkiewicz, M. Wilkinson, J.D. Beauchamp, S.M. Cristescu, S.J. Fowler, et al. 2020. A benchmarking protocol for breath analysis: The peppermint experiment. Journal of Breath Research 14 (4): 046008.

    Article  Google Scholar 

  • Horváth, I., et al. 2017. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. European Respiratory Journal 49 (4): 1600965.

    Article  Google Scholar 

  • Ishida, H., Y. Wada, and H. Matsukura. 2012. Chemical sensing in robotic applications: A review. IEEE Sensors Journal 12 (11): 3163–3173.

    Article  Google Scholar 

  • Ji, H., W. Zeng, and Y. Li. 2019. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 11 (47): 22664–22684.

    Article  Google Scholar 

  • Kanakam, P., S.M. Hussain, and A.S.N. Chakravarthy. 2018. Smart-trace: A future security aid using body odor sensing of an individual with IoT. In Proceedings of 3rd international conference on internet of things and connected technologies (ICIoTCT), 26–27.

    Google Scholar 

  • Karthick, G.S., and P.B. Pankajavalli. 2019. Effective usage of exhaled volatile organic compounds in disease diagnosis: A comprehensive review. Indian Journal of Public Health Research & Development 10 (4): 246–251.

    Article  Google Scholar 

  • Khaliq, A., S. Pashami, E. Schaffernicht, A. Lilienthal, and V.H. Bennetts. 2015. Bringing artificial olfaction and mobile robotics closer together–an integrated 3D gas dispersion simulator in ROS. In Proceedings of the 16th international symposium on olfaction and electronic nose (ISOEN), Dijon, France, vol. 28, 78.

    Google Scholar 

  • Kharitonov, S.A., and P.J. Barnes. 2001. Exhaled markers of pulmonary disease. American Journal of Respiratory and Critical Care Medicine 163 (7): 1693–1722.

    Article  Google Scholar 

  • Marques, L., U. Nunes, and A.T. de Almeida. 2002. Olfaction-based mobile robot navigation. Thin Solid Films 418 (1): 51–58.

    Article  Google Scholar 

  • Mitsubayashi, K., O. Niwa, and Y. Ueno, eds. 2019. Chemical, gas, and biosensors for internet of things and related applications. Elsevier.

    Google Scholar 

  • Olofsson, J.K., and J.A. Gottfried. 2015. The muted sense: Neurocognitive limitations of olfactory language. Trends in Cognitive Sciences 19 (6): 314–321.

    Article  Google Scholar 

  • Pauling, L., A.B. Robinson, R. Teranishi, and P. Cary. 1971. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proceedings of the National Academy of Sciences of the United States of America 68: 2374–2376.

    Article  Google Scholar 

  • Pennazza, G., M. Santonico, and A.F. Agrò. 2013. Narrowing the gap between breathprinting and disease diagnosis, a sensor perspective. Sensors and Actuators B: Chemical 179: 270–275.

    Article  Google Scholar 

  • Persaud, K., and G. Dodd. 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299 (5881): 352–355.

    Article  Google Scholar 

  • Röck, F., N. Barsan, and U. Weimar. 2008. Electronic nose: Current status and future trends. Chemical Reviews 108 (2): 705–725.

    Article  Google Scholar 

  • Salim, A., and S. Lim. 2017. Review of recent inkjet-printed capacitive tactile sensors. Sensors 17 (11): 2593.

    Article  Google Scholar 

  • Schleich, F.N., et al. 2016. Volatile organic compounds discriminate between eosinophilic and neutrophilic inflammation in vitro. Journal of Breath Research 10 (1): 016006.

    Article  Google Scholar 

  • Schmid, S., S. Schouwenburg, E. Stewart, A.F. Fares, P. Bradbury, F. Shepherd, et al. 2020. 1217P Breathomics eNose technology as a non-invasive, inexpensive, point-of-care predictive test to detect early stage lung cancer in never or former light smokers. Annals of Oncology 31: S795.

    Article  Google Scholar 

  • Shi, H., M. Zhang, and B. Adhikari. 2018. Advances of electronic nose and its application in fresh foods: A review. Critical Reviews in Food Science and Nutrition 58 (16): 2700–2710.

    Article  Google Scholar 

  • Soloman, S. 2009. Sensors handbook. Inc: McGraw-Hill.

    Google Scholar 

  • Van Velzen, P., et al. 2019. Exhaled breath profiles before, during and after exacerbation of COPD: A prospective follow-up study. COPD: Journal of Chronic Obstructive Pulmonary Disease 16 (5–6): 330–337.

    Article  Google Scholar 

  • Wan, J., J. Hong, Z. Pang, B. Jayaraman, and F. Shen. 2019. IEEE ACCESS special section editorial: Key technologies for smart factory of industry 4.0. IEEE Access 7: 17969–17974.

    Article  Google Scholar 

  • Wang, Y., A. Liu, Y. Han, and T. Li. 2020. Sensors based on conductive polymers and their composites: A review. Polymer International 69 (1): 7–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Santonico or Giorgio Pennazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santonico, M., Pennazza, G., Brinkman, P., D’Amico, A. (2022). Advances in Artificial Olfaction Systems: Obviously Artificial, Somewhat Olfactive. In: Di Stefano, N., Russo, M.T. (eds) Olfaction: An Interdisciplinary Perspective from Philosophy to Life Sciences. Human Perspectives in Health Sciences and Technology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-75205-7_12

Download citation

Publish with us

Policies and ethics