Skip to main content

Simulation and Optimization of Energy Systems

  • Living reference work entry
  • First Online:
Handbook of Smart Energy Systems
  • 163 Accesses

Abstract

Recently, several countries have been talking about net-zero carbon emission plans by 2050 and 2060. On the other hand, several countries and territories are still suffering from energy supply shortage. Regardless of whether the goal is to achieve a fully green energy supply or just achieve a sustainable and affordable energy production, there will be a need for designing efficient energy systems. Achieving an energy-efficient system design passes through three stages: (1) modeling, (2) optimization, and (3) control. Accurate modeling is required to predict the system’s performance and identify the primary variables affecting the system’s performance. The model is then used to conduct an optimization study to achieve optimal design and/or optimal operation of the system. Finally, a control scheme is usually integrated with energy system to maintain its optimal operation status.

This chapter starts by discussing and comparing the two major modeling approaches, physics-based models and data-driven models. Then, it gives an overview on the optimization problem formulation and presents the main optimization methods and approaches. Finally, this chapter briefly discusses two commonly employed control methods for energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • H.Z. Al Garni, A. Awasthi, M.A.M. Ramli, Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Convers. Manag. 155, 42–57 (2018). ISSN:01968904. https://doi.org/10.1016/j.enconman.2017.10.090

  • M. Azzam et al., Dynamic optimization of dry reformer under catalyst sintering using neural networks. Energy Convers. Manag. 157, 146–156 (2018). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2017.11.089

  • K. Bourouni, Chapter 5: Optimization of renewable energy systems: the case of desalination, in Modeling and Optimization of Renewable Energy Systems, ed. by A. Encan (InTech, 2012). ISBN: 978-953-51-0600-5. https://doi.org/10.5772/2283

  • F. Calise et al., A novel solar-geothermal trigeneration system integrating water desalination: design, dynamic simulation and economic assessment. Energy 115, 1533–1547 (2016). ISSN: 03605442. https://doi.org/10.1016/j.energy.2016.07.103

  • A. Campione et al., Coupling electrodialysis desalination with photovoltaic and wind energy systems for energy storage: dynamic simulations and control strategy. Energy Convers. Manag. 216, 112940 (2020). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2020.112940

  • K.J. Craig et al., Using CFD and ray tracing to estimate the heat losses of a tubular cavity dish receiver for different inclination angles. Solar Energy 211, 1137–1158 (2020). ISSN: 0038092X. https://doi.org/10.1016/j.solener.2020.10.054

  • C. Diaz, L. Jenny et al., Optimal operation of combined heat and power systems: an optimization-based control strategy. Energy Convers. Manag. 199, 111957 (2019). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2019.111957

  • J.A. Duffie, W.A. Beckman, J. McGowan, Solar engineering of thermal processes. Am. J. Phys. 53(4), 382–382 (1985). ISSN: 0002-9505. https://doi.org/10.1119/1.14178

  • A. Galizia et al., Advanced control system for reverse osmosis optimization in water reuse systems. Desalination 518 (2021). ISSN: 00119164. https://doi.org/10.1016/j.desal.2021.115284

  • Y. Golizadeh Akhlaghi et al., A constraint multi-objective evolutionary optimization of a state-of-the-art dew point cooler using digital twins. Energy Convers. Manag. 211, 112772 (2020). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2020.112772

  • L.M. Halabi et al., Performance analysis of hybrid PV/diesel/battery system using HOMER: a case study Sabah, Malaysia. Energy Convers. Manag. 144, 322–339 (2017). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2017.04.070

  • N. Kincaid, G. Mungas, N. Kramer et al., An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver. Appl. Energy 231, 1109–1121 (2018). ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2018. 09.153

  • N. Kincaid, G. Mungas, N. Kramer et al., Sensitivity analysis on optical performance of a novel linear Fresnel concentrating solar power collector. Solar Energy 180, 383–390 (2019). ISSN: 0038092X. https://doi.org/10.1016/j.solener.2019.01.054

  • C. Klemm, P. Vennemann, Modeling and optimization of multi-energy systems in mixed-use districts: a review of existing methods and approaches. Renew. Sustain. Energy Rev. 135, 110206 (2021). ISSN: 18790690. https://doi.org/10.1016/j.rser.2020.110206

  • M. Malvoni et al., Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy Convers. Manag. 145, 169–181 (2017). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2017.04.075

  • K. Milidonis et al., Review of application of AI techniques to Solar Tower Systems. Solar Energy 224, 500–515 (2021). ISSN: 0038092X. https://doi.org/10.1016/j.solener.2021.06.009

  • R. Molinaro et al., Embedding data analytics and CFD into the digital twin concept. Comput. Fluids 214, 104759 (2021). ISSN: 00457930. https://doi.org/10.1016/j.compfluid.2020.104759

  • NASA, Prediction Of Worldwide Energy Resources (POWER) (n.d.). https://power.larc.nasa.gov/

  • National Renewable Energy Laboratory, NREL, The National Solar Radiation Database (NSRDB) (n.d.). https://385nsrdb.nrel.gov/

  • S. Nayak, Fundamentals of Optimization Techniques with Algorithms (Elsevier, 2020). ISBN: 9780128211267. https://doi.org/10.1016/C2019-1-02539-9

  • V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). ISSN: 09521976. https://doi.org/10.1016/j.engappai.2017.01.013. arXiv: 1705.05584

  • O. Oruc, I. Dincer, Analysis and assessment of a new solar assisted sodium hydroxide thermochemical hydrogen production cycle. Energy Convers. Manag. 237, 114139 (2021). ISSN: 01968904. https://doi.org/10.1016/j.enconman.2021.114139

  • F.R. Rubio, M. Berenguel, E.F. Camacho, Fuzzy logic control of a solar power plant. IEEE Trans. Fuzzy Syst. 3(4), 459–468 (1995). ISSN: 19410034. https://doi.org/10.1109/91.481955

  • U. Sahoo et al., Development of an innovative polygeneration process in hybrid solar-biomass system for combined power, cooling and desalination. Appl. Thermal Eng. 120, 560–567 (2017). ISSN: 13594311. https://doi.org/10.1016/j.applthermaleng.2017.04.034

  • H. Sayyaadi, Modeling, Assessment, and Optimization of Energy Systems (Elsevier, 2021). ISBN: 9780128166567. https://doi.org/10.1016/C2018-0-00441-7

  • R. Scattolini, Architectures for distributed and hierarchical Model Predictive Control – a review. J. Process Control 19(5), 723–731 (2009). ISSN: 09591524. https://doi.org/10.1016/j.jprocont.2009.02.003

  • Solar Futures Study, Technical report, September. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (2021)

    Google Scholar 

  • Q. Tan et al., Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic hydropower system considering forecast uncertainty. Appl. Energy 285, 116442 (2021). ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2021.116442

  • U.S. Department of Energy, National Renewable Energy Laboratory, SolTrace (n.d.a). https://www.nrel.gov/csp/soltrace.html

  • U.S. Department of Energy, National Renewable Energy Laboratory, System Advisor Model (SAM). (n.d.b). https://sam.nrel.gov/

  • U.S. Department of Energy’s, National Renewable Energy Laboratory, Hybrid Optimization Model for Electric Renewable (HOMER) (n.d.c). http://www.nrel.gov/homer

  • J. Zeaiter et al., Waste tire pyrolysis using thermal solar energy: an integrated approach. Renew. Energy 123, 44–51 (2018). ISSN: 18790682. https://doi.org/10.1016/j.renene.2018.02.030

  • W. Zhou et al., Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Appl. Energy 87(2), 380–389 (2010). ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2009.08.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa F. Kaddoura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaddoura, M.F. (2022). Simulation and Optimization of Energy Systems. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-72322-4_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72322-4_146-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72322-4

  • Online ISBN: 978-3-030-72322-4

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics