Skip to main content

Links Between Paraquat and Parkinson’s Disease

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Parkinson’s disease (PD) is the most common degenerative disorder of the aging brain. Several gene mutations have been identified to be involved in familial PD. However, the majority of cases are sporadic and their origin(s) still remain undetermined. The environment is a key contributor to human health and disease. Epidemiological evidence suggests that environmental factors and/or mutations in genes play a role in the etiology of neurodegenerative diseases. Particularly, paraquat (PQ) has been demonstrated to induce neuronal death in cellular and animal models associated with PD. PQ-induced neurotoxicity has provided valuable insight into the mechanisms regulating neuronal cell death by environmental toxicants. However, the molecular mechanisms involved in neuronal cell death by PQ have not been completely identified. Importantly, in vivo studies allow the understanding of how PQ could be associated with PD. This review presents a brief summary of some of the published toxicologic data and critically evaluates whether a relationship exists between PQ exposure and PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASK1:

Apoptosis signal-regulating kinase 1

ER:

Endoplasmic reticulum

HDAC:

Histone deacetylase

JNK:

c-Jun NH2-terminal kinase

LB:

Lewy bodies

LRRK2:

Leucine-rich repeat kinase 2

MAPKs:

Mitogen-activated protein kinases

MPP+ 1:

Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NF-κB:

Nuclear factor-kappa B

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

6-OHDA:

6-Hydroxydopamine

PD:

Parkinson’s disease

PINK1 :

PTEN-induced putative kinase 1

PQ:

Paraquat

ROS:

Reactive oxygen species

SIRT1:

Silent mating-type information regulation 2 homolog 1

SNpc:

Substantia nigra pars compacta

WAVE2:

Verprolin-homologous protein 2

References

  • Anselmi, L., Toti, L., Bove, C., Hampton, J., & Travagli, R. A. (2017). A nigro-vagal pathway controls gastric motility and is affected in a rat model of parkinsonism. Gastroenterology, 153, 1581–1593.

    Article  PubMed  Google Scholar 

  • Bhatia, T. N., Pant, D. B., Eckhoff, E. A., Gongaware, R. N., Do, T., et al. (2019). Astrocytes do not forfeit their neuroprotective roles after surviving intense oxidative stress. Frontiers in Molecular Neuroscience, 12, 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-San Pedro, J. M., Niso-Santano, M., Gomez-Sanchez, R., Pizarro-Estrella, E., Aiastui-Pujana, A., et al. (2013). The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cellular and Molecular Life Sciences, 70, 121–136.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Z., Zheng, F., Ding, Y., Zhan, Y., Gong, R., et al. (2019). Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells. Toxicological Sciences, 171, 515–529.

    Google Scholar 

  • Chang, Z. S., Xia, J. B., Wu, H. Y., Peng, W. T., Jiang, F. Q., et al. (2019). Forkhead box O3 protects the heart against paraquat-induced aging-associated phenotypes by upregulating the expression of antioxidant enzymes. Aging Cell, 18, e12990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng, Y. H., Chou, W. C., Yang, Y. F., Huang, C. W., How, C. M., et al. (2018). PBPK/PD assessment for Parkinson’s disease risk posed by airborne pesticide paraquat exposure. Environmental Science and Pollution Research International, 25, 5359–5368.

    Article  PubMed  Google Scholar 

  • Colle, D., Farina, M., Ceccatelli, S., & Raciti, M. (2018). Paraquat and Maneb exposure alters rat neural stem cell proliferation by inducing oxidative stress: New insights on pesticide-induced neurodevelopmental toxicity. Neurotoxicity Research, 34, 820–833.

    Article  CAS  PubMed  Google Scholar 

  • Colle, D., Santos, D. B., Naime, A. A., Goncalves, C. L., Ghizoni, H., et al. (2020). Early postnatal exposure to Paraquat and Maneb in mice increases nigrostriatal dopaminergic susceptibility to a re-challenge with the same pesticides at adulthood: Implications for Parkinson’s disease. Neurotoxicity Research, 37, 210–226.

    Article  CAS  PubMed  Google Scholar 

  • Cristovao, A. C., Campos, F. L., Je, G., Esteves, M., Guhathakurta, S., et al. (2020). Characterization of a Parkinson’s disease rat model using an upgraded paraquat exposure paradigm. The European Journal of Neuroscience, 52, 3242–3255.

    Article  PubMed  Google Scholar 

  • Del Rey, N. L., Quiroga-Varela, A., Garbayo, E., Carballo-Carbajal, I., Fernandez-Santiago, R., et al. (2018). Advances in Parkinson’s disease: 200 years later. Frontiers in Neuroanatomy, 12, 113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dilberger, B., Baumanns, S., Schmitt, F., Schmiedl, T., Hardt, M., et al. (2019). Mitochondrial oxidative stress impairs energy metabolism and reduces stress resistance and longevity of C. elegans. Oxidative Medicine and Cellular Longevity, 2019, 6840540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, Y. W., Zhao, G. J., Li, X. L., Hong, G. L., Li, M. F., et al. (2016). SIRT1 exerts protective effects against paraquat-induced injury in mouse type II alveolar epithelial cells by deacetylating NRF2 in vitro. International Journal of Molecular Medicine, 37, 1049–1058.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Nunes, R. G., Pereira, P. S., Elekofehinti, O. O., Fidelis, K. R., da Silva, C. S., et al. (2019). Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster. Pesticide Biochemistry and Physiology, 157, 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, Z., Rudyk, C., Thompson, A., Farmer, K., Fenner, B., et al. (2020). Leucine-rich repeat kinase-2 (LRRK2) modulates microglial phenotype and dopaminergic neurodegeneration. Neurobiology of Aging, 91, 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Gecse, E., Gilanyi, B., Csaba, M., Hajdu, G., & Soti, C. (2019). A cellular defense memory imprinted by early life toxic stress. Scientific Reports, 9, 18935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Sanchez, R., Yakhine-Diop, S. M., Bravo-San Pedro, J. M., Pizarro-Estrella, E., Rodriguez-Arribas, M., et al. (2016). PINK1 deficiency enhances autophagy and mitophagy induction. Molecular & Cellular Oncology, 3, e1046579.

    Article  CAS  Google Scholar 

  • Gonzalez-Polo, R. A., Bravo-San Pedro, J. M., Gómez-Sánchez, R., Pizarro-Estrella, E., Niso-Santano, M., & Fuentes, J. M. (2014). Links between Paraquat and Parkinson’s disease (pp. 819–842). Springer.

    Google Scholar 

  • Hirayama, N., Aki, T., Funakoshi, T., Noritake, K., Unuma, K., & Uemura, K. (2018). Necrosis in human neuronal cells exposed to paraquat. The Journal of Toxicological Sciences, 43, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Hsueh, Y. J., Meir, Y. J., Yeh, L. K., Wang, T. K., Huang, C. C., et al. (2020). Topical ascorbic acid ameliorates oxidative stress-induced corneal endothelial damage via suppression of apoptosis and autophagic flux blockage. Cell, 9, 943.

    Google Scholar 

  • Huang, C. Y., Sivalingam, K., Shibu, M. A., Liao, P. H., Ho, T. J., et al. (2020). Induction of autophagy by Vasicinone protects neural cells from mitochondrial dysfunction and attenuates Paraquat-mediated Parkinson’s disease associated alpha-Synuclein levels. Nutrients, 12, 1707.

    Google Scholar 

  • Kalyn, M., Hua, K., Mohd Noor, S., Wong, C. E. D., & Ekker, M. (2019). Comprehensive analysis of neurotoxin-induced ablation of dopaminergic neurons in zebrafish larvae. Biomedicine, 8, 1.

    Google Scholar 

  • Ko, D. R., Chung, S. P., You, J. S., Cho, S., Park, Y., et al. (2017). Effects of Paraquat ban on herbicide poisoning-related mortality. Yonsei Medical Journal, 58, 859–866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konnova, E. A., & Swanberg, M. (2018). Animal models of Parkinson’s disease. In T. B. Stoker (Ed.), Parkinson’s disease: pathogenesis and clinical aspects. JC Greenland.

    Google Scholar 

  • Maitra, U., Scaglione, M. N., Chtarbanova, S., & O’Donnell, J. M. (2019). Innate immune responses to paraquat exposure in a Drosophila model of Parkinson’s disease. Scientific Reports, 9, 12714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moskal, N., Riccio, V., Bashkurov, M., Taddese, R., Datti, A., et al. (2020). ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway. Nature Communications, 11, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musgrove, R. E., Helwig, M., Bae, E. J., Aboutalebi, H., Lee, S. J., et al. (2019). Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular alpha-synuclein transfer. The Journal of Clinical Investigation, 129, 3738–3753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naudet, N., Antier, E., Gaillard, D., Morignat, E., Lakhdar, L., et al. (2017). Oral exposure to Paraquat triggers earlier expression of phosphorylated alpha-Synuclein in the enteric nervous system of A53T mutant human alpha-Synuclein transgenic mice. Journal of Neuropathology and Experimental Neurology, 76, 1046–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niso-Santano, M., Gonzalez-Polo, R. A., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Lastres-Becker, I., et al. (2010). Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis. Free Radical Biology & Medicine, 48, 1370–1381.

    Article  CAS  Google Scholar 

  • Ortega-Arellano, H. F., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2019). Neuroprotective effects of methanolic extract of avocado Persea americana (var. Colinred) peel on paraquat-induced locomotor impairment, lipid peroxidation and shortage of life span in transgenic knockdown parkin Drosophila melanogaster. Neurochemical Research, 44, 1986–1998.

    Article  CAS  PubMed  Google Scholar 

  • Pezzoli, G., & Cereda, E. (2013). Exposure to pesticides or solvents and risk of Parkinson disease. Neurology, 80, 2035–2041.

    Article  CAS  PubMed  Google Scholar 

  • Pinho, B. R., Reis, S. D., Hartley, R. C., Murphy, M. P., & Oliveira, J. M. A. (2019). Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radical Biology & Medicine, 130, 318–327.

    Article  CAS  Google Scholar 

  • Rasheed, M. S. U., Tripathi, M. K., Patel, D. K., & Singh, M. P. (2020). Resveratrol regulates Nrf2-mediated expression of antioxidant and xenobiotic metabolizing enzymes in pesticides-induced parkinsonism. Protein and Peptide Letters, 27, 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  • Ravi, S. K., Narasingappa, R. B., Joshi, C. G., Girish, T. K., & Vincent, B. (2018). Neuroprotective effects of Cassia tora against paraquat-induced neurodegeneration: Relevance for Parkinson’s disease. Natural Product Research, 32, 1476–1480.

    Article  CAS  PubMed  Google Scholar 

  • Roede, J. R., Uppal, K., Park, Y., Tran, V., & Jones, D. P. (2014). Transcriptome-metabolome wide association study (TMWAS) of maneb and paraquat neurotoxicity reveals network level interactions in toxicologic mechanism. Toxicology Reports, 1, 435–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudyk, C., Dwyer, Z., Hayley, S., & membership C. (2019). Leucine-rich repeat kinase-2 (LRRK2) modulates paraquat-induced inflammatory sickness and stress phenotype. Journal of Neuroinflammation, 16, 120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, C., Kanthasamy, A., Jin, H., Anantharam, V., & Kanthasamy, A. G. (2011). Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology, 32, 586–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmashook, E. V., Genrikhs, E. E., Aleksandrova, O. P., Amelkina, G. A., Zelenova, E. A., & Isaev, N. K. (2016). NMDA-receptors are involved in Cu2+/Paraquat-induced death of cultured cerebellar granule neurons. Biochemistry (Mosc), 81, 899–905.

    Article  CAS  Google Scholar 

  • Sun, D. Z., Song, C. Q., Xu, Y. M., Wang, R., Liu, W., et al. (2018). Involvement of PINK1/Parkin-mediated mitophagy in paraquat- induced apoptosis in human lung epithelial-like A549 cells. Toxicology In Vitro, 53, 148–159.

    Article  CAS  PubMed  Google Scholar 

  • Taipa, R., Pereira, C., Reis, I., Alonso, I., Bastos-Lima, A., et al. (2016). DJ-1 linked parkinsonism (PARK7) is associated with Lewy body pathology. Brain, 139, 1680–1687.

    Article  PubMed  Google Scholar 

  • Tamano, H., Morioka, H., Nishio, R., Takeuchi, A., & Takeda, A. (2019). Blockade of rapid influx of extracellular Zn(2+) into Nigral dopaminergic neurons overcomes Paraquat-induced Parkinson’s disease in rats. Molecular Neurobiology, 56, 4539–4548.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. H., Souders, C. L., 2nd, Zhao, Y. H., & Martyniuk, C. J. (2018). Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). Chemosphere, 191, 106–117.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. L., Zheng, J., Zhang, X. F., & Zhang, Y. (2020). Attenuation of paraquat-induced inflammation by inhibitors of phosphorylation of mitogen-activated protein kinases in BV2 microglial cells. Journal of the Neurological Sciences, 410, 116679.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J. H., Whitehead, Z., & Van Wilpe, E. (2016). Paraquat intoxication and associated pathological findings in three dogs in South Africa. Journal of the South African Veterinary Association, 87, e1–e9.

    Article  PubMed  Google Scholar 

  • Wu, K. X., Yan, W. G., Tian, T., Wang, Y. F., & Huang, M. (2020). Autophagic dysfunction contributes to alpha-synuclein accumulation in dopaminergic neurons induced by paraquat. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 38, 180–186.

    CAS  PubMed  Google Scholar 

  • Xiao, D., Yuan, D., Tan, B., Wang, J., Liu, Y., & Tan, B. (2019). The role of Nrf2 signaling pathway in Eucommia ulmoides flavones regulating oxidative stress in the intestine of piglets. Oxidative Medicine and Cellular Longevity, 2019, 9719618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakhine-Diop, S. M., Bravo-San Pedro, J. M., Gomez-Sanchez, R., Pizarro-Estrella, E., Rodriguez-Arribas, M., et al. (2014). G2019S LRRK2 mutant fibroblasts from Parkinson’s disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology, 324, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Yakhine-Diop, S. M. S., Rodriguez-Arribas, M., Martinez-Chacon, G., Uribe-Carretero, E., Gomez-Sanchez, R., et al. (2018). Acetylome in human fibroblasts from Parkinson’s disease patients. Frontiers in Cellular Neuroscience, 12, 97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yakhine-Diop, S. M. S., Niso-Santano, M., Rodriguez-Arribas, M., Gomez-Sanchez, R., Martinez-Chacon, G., et al. (2019). Impaired mitophagy and protein acetylation levels in fibroblasts from Parkinson’s disease patients. Molecular Neurobiology, 56, 2466–2481.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, X., Li, F., Chu, Q., & Pang, H. (2018). Secretogranin III may be an indicator of paraquat-induced astrocyte activation and affects the recruitment of BDNF during this process. International Journal of Molecular Medicine, 42, 3622–3630.

    CAS  PubMed  Google Scholar 

  • Zhou, Q., Zhang, H., Wu, Q., Shi, J., & Zhou, S. (2017). Pharmacological manipulations of autophagy modulate paraquat-induced cytotoxicity in PC12 cells. International Journal of Biochemistry and Molecular Biology, 8, 13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S.M.S.Y.-D. was supported by the Isabel Gemio Foundation. G.M-C. was supported by the ONCE Foundation. M.N.-S. was funded by the “Ramon y Cajal” Program (RYC-2016-20883), Spain. J.M B-S.P was funded by “Ramon y Cajal” Program (RYC-2018-025099-I). J.M.F. received research support from the Instituto de Salud Carlos III, CIBERNED (CB06/05/004), and Consejería de Economía, Ciencia y Agenda Digital (IB18048 and GR18063). This work was also partially supported by “Fondo Europeo de Desarrollo Regional” (FEDER) from the European Union. The authors thank FUNDESALUD for helpful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Martínez-Chacón, G. et al. (2021). Links Between Paraquat and Parkinson’s Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics