Skip to main content

Iron Neurotoxicity in Parkinson’s Disease

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Iron plays essential roles in the early development of cognitive processes and in the maintenance of neuronal functions in the mature brain; therefore, neurons have expeditious mechanisms to ensure a readily available iron supply. However, several neurodegenerative diseases present dysregulation of iron homeostasis derived from mitochondrial dysfunction, inflammatory conditions, decreased glutathione levels, and oxidative damage, resulting in downstream protein aggregation, lipid peroxidation, and nucleic acid modification. In this chapter, the mechanisms by which iron homeostasis is lost in Parkinson’s disease (PD) are discussed. The relevance of endogenous toxins such as mediators of mitochondrial dysfunction, the relationship between inflammation and iron dyshomeostasis, and the role of hepcidin as a neuroprotective agent are also addressed. A model is proposed that involves a positive feedback loop between mitochondrial dysfunction, inflammation, and increased iron content in dopaminergic neurons, which, if unchecked, ends in substantia nigra (SN) neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6-OHDA:

6-hydroxydopamine

AD:

Alzheimer’s disease

ALAS2:

5′-aminolevulinate synthase 2

APP:

Amyloid precursor protein

ARE:

Antioxidant response element

ATP13A2:

ATPase cation transporting 13A2

Aβ:

Amyloid β

CDC14A:

Dual specificity protein phosphatase

CDKAL1:

CDK5 Regulatory Subunit Associated Protein 1 Like 1

CNS:

Central nervous system

CP:

Ceruloplasmin

CSF:

Cerebrospinal fluid

Dexras1:

Dexamethasone-induced Ras protein 1

DJ-1:

PARK7, Parkinson disease protein 7

DMT1:

SLC11A2, divalent metal transporter 1

Erv1:

Mitochondrial FAD-linked sulfhydryl oxidase ERV1

FBXL5:

F-Box and Leucine-Rich Repeat Protein 5

Fe-S:

Iron-sulfur

FPN1:

SCL40A, ferroportin 1

GPX4:

Glutathione peroxidase 4

HIF:

Hypoxia inducible factor

HRE:

HIF response element

IFNγ:

Interferon gamma

IL:

Interleukin

IRE:

Iron responsive element

IRP:

Iron regulatory protein

KIF4A:

Kinesin Family Member 4A

L-DOPA:

l-3,4-dihydroxyphenylalanine

LIMK1:

LIM domain kinase 1

LIP:

Labile iron pool

LPS:

Lipopolysaccharide

LRRK2:

Leucine-rich repeat kinase 2

L-VGCC:

L-type voltage-gated calcium channel

MPP+:

1-methyl-4-phenylpyridinium

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRCKα:

Myotonic dystrophy kinase-related Cdc42-binding kinase α

NDUFS4:

NADH-ubiquinone oxidoreductase subunit S4

NFκB:

Nuclear factor kappa B

Nfs1: NMDA:

N-Methyl-d-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

NTBI:

Non-transferring bound iron

ONOO:

Peroxynitrite

PAP7:

PKA-associated protein 7

PD:

Parkinson’s disease

PINK-1:

PTEN-induced putative kinase 1

PSP-PDC:

Progressive supranuclear palsy, parkinsonism-dementia complex

PUFAs:

Polyunsaturated fatty acids

RBC:

Red blood cells

ROS:

Reactive oxygen species

SN:

Substantia nigra

Steap:

Six-transmembrane epithelial antigen of the prostate

Tf:

Transferrin

TfR1:

Transferrin receptor 1

TLR4:

Toll-like receptor 4

TNF:

Tumor necrosis factor

UPDRS:

Unified Parkinson’s Disease Rating Scale

UTR:

Untranslated region

References

  • Andolfo, I., De Falco, L., Asci, R., Russo, R., Colucci, S., Gorrese, M., Zollo, M., & Iolascon, A. (2010). Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells. Haematologica, 95, 1244–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, M., Du, X., Jiao, Q., Liu, Z., & Jiang, H. (2020). α-Synuclein regulates iron homeostasis via preventing Parkin-mediated DMT1 Ubiquitylation in Parkinson’s disease models. ACS Chemical Neuroscience, 11, 1682–1691.

    Article  CAS  PubMed  Google Scholar 

  • Camaschella, C., Nai, A., & Silvestri, L. (2020). Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 105, 260–272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheah, J. H., Kim, S. F., Hester, L. D., Clancy, K. W., Patterson, S. E., 3rd, Papadopoulos, V., & Snyder, S. H. (2006). NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron, 51, 431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Jiang, R., Chen, M., Zheng, J., Chen, M., Braidy, N., Liu, S., Liu, G., Maimaitiming, Z., Shen, T., Dunaief, J. L., Vulpe, C. D., Anderson, G. J., & Chen, H. (2019). Multi-copper ferroxidase deficiency leads to iron accumulation and oxidative damage in astrocytes and oligodendrocytes. Scientific Reports, 9, 9437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faucheux, B. A., Martin, M. E., Beaumont, C., Hunot, S., Hauw, J. J., Agid, Y., & Hirsch, E. C. (2002). Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. Journal of Neurochemistry, 83, 320–330.

    Article  CAS  PubMed  Google Scholar 

  • Friedlich, A. L., Tanzi, R. E., & Rogers, J. T. (2007). The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Molecular Psychiatry, 12, 222–223.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, M., Riederer, P., & Double, K. L. (2008). Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson’s disease. Parkinsonism & Related Disorders, 14(Suppl 2), S185–S188.

    Article  Google Scholar 

  • Gomez, F. J., Aguirre, P., Gonzalez-Billault, C., & Nunez, M. T. (2011). Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). Journal of Neural Transmission, 118, 421–431.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, D. N., Dukes, A. A., Mortimer, A. D., & Hastings, T. G. (2013). Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radical Biology and Medicine, 65, 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Hubert, N., & Hentze, M. W. (2002). Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proceedings of the National Academy of Sciences of the United States of America, 99, 12345–12350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, S., Guo, S., Li, H., Ni, Y., Ma, W., & Zhao, R. (2019). Identification and functional verification of microRNA-16 family targeting intestinal divalent metal transporter 1 (DMT1) in vitro and in vivo. Frontiers in Physiology, 10, 819.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellogg, D. L., 3rd, McCammon, K. M., Hinchee-Rodriguez, K. S., Adamo, M. L., & Roman, L. J. (2017). Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes. Free Radical Biology and Medicine, 110, 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Lill, R., & Freibert, S. A. (2020). Mechanisms of mitochondrial Iron-sulfur protein biogenesis. Annual Review of Biochemistry, 89, 471–499.

    Article  CAS  PubMed  Google Scholar 

  • Lu, L. N., Qian, Z. M., Wu, K. C., Yung, W. H., & Ke, Y. (2017). Expression of iron transporters and pathological hallmarks of Parkinson’s and Alzheimer’s diseases in the brain of young, adult, and aged rats. Molecular Neurobiology, 54, 5213–5224.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Bastida, A., Ward, R. J., Newbould, R., Piccini, P., Sharp, D., Kabba, C., Patel, M. C., Spino, M., Connelly, J., Tricta, F., Crichton, R. R., & Dexter, D. T. (2017). Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Scientific Reports, 7, 1398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McElroy, G. S., Reczek, C. R., Reyfman, P. A., Mithal, D. S., Horbinski, C. M., & Chandel, N. S. (2020). NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial complex I dysfunction. Cell Metabolism, 32, 301–308.e306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mena, N. P. (2011). Efectos de la inhibición del complejo I sobre la homeostasis del hierro mitocondrial, implicancias en la enfermedad de Parkinson. Tesis Entregada A La Universidad De Chile En Cumplimiento Parcial De Los Requisitos Para Optar Al Grado De Doctor en Ciencias con Mención en Biología Molecular, Celular Y Neurociencias.

    Google Scholar 

  • Moreau, C., Duce, J. A., Rascol, O., Devedjian, J. C., Berg, D., Dexter, D., Cabantchik, Z. I., Bush, A. I., & Devos, D. (2018). Iron as a therapeutic target for Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 33, 568–574.

    Article  Google Scholar 

  • Moroishi, T., Yamauchi, T., Nishiyama, M., & Nakayama, K. I. (2014). HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism. The Journal of Biological Chemistry, 289, 16430–16441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas, G., Bennoun, M., Devaux, I., Beaumont, C., Grandchamp, B., Kahn, A., & Vaulont, S. (2001). Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 8780–8785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Núñez, M. T., & Chaná-Cuevas, P. (2018). New perspectives in Iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel, Switzerland), 11, 109.

    Article  CAS  Google Scholar 

  • Núñez, M. T., & Hidalgo, C. (2019). Noxious iron-calcium connections in neurodegeneration. Frontiers in Neuroscience, 13, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Núñez, M. T., Urrutia, P., Mena, N., Aguirre, P., Tapia, V., & Salazar, J. (2012). Iron toxicity in neurodegeneration. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 25, 761–776.

    Article  CAS  Google Scholar 

  • Ohgami, R. S., Campagna, D. R., McDonald, A., & Fleming, M. D. (2006). The Steap proteins are metalloreductases. Blood, 108, 1388–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papanikolaou, G., & Pantopoulos, K. (2017). Systemic iron homeostasis and erythropoiesis. IUBMB Life, 69, 399–413.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X., Gunshin, H., Leiter, L., McPhee, J., Sarang, S. S., Utsuki, T., Greig, N. H., Lahiri, D. K., Tanzi, R. E., Bush, A. I., Giordano, T., & Gullans, S. R. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. The Journal of Biological Chemistry, 277, 45518–45528.

    Article  CAS  PubMed  Google Scholar 

  • Salazar, J., Mena, N., & Núñez, M. T. (2006). Iron dyshomeostasis in Parkinson’s disease. Journal of Neural Transmission. Supplementum, 71, 205–213.

    CAS  Google Scholar 

  • Sanchez, M., Galy, B., Schwanhaeusser, B., Blake, J., Bähr-Ivacevic, T., Benes, V., Selbach, M., Muckenthaler, M. U., & Hentze, M. W. (2011). Iron regulatory protein-1 and -2: Transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood, 118, e168–e179.

    Article  CAS  PubMed  Google Scholar 

  • Sian-Hulsmann, J., & Riederer, P. (2020). The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria: 1996), 127, 749–754.

    Article  CAS  Google Scholar 

  • Smolders, S., & Van Broeckhoven, C. (2020). Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson’s disease pathogenesis. Acta Neuropathologica Communications, 8, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., Fulda, S., Gascón, S., Hatzios, S. K., Kagan, V. E., Noel, K., Jiang, X., Linkermann, A., Murphy, M. E., Overholtzer, M., Oyagi, A., Pagnussat, G. C., Park, J., Ran, Q., Rosenfeld, C. S., Salnikow, K., Tang, D., Torti, F. M., Torti, S. V., Toyokuni, S., Woerpel, K. A., & Zhang, D. D. (2017). Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171, 273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symons, M. C. R., & Gutteridge, J. M. C. (1998). Free radicals and iron: Chemistry, biology, and medicine. Oxford University Press. xii, 242 p.

    Google Scholar 

  • Thomsen, M. S., Andersen, M. V., Christoffersen, P. R., Jensen, M. D., Lichota, J., & Moos, T. (2015). Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiology of Disease, 81, 108–118.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, S., Ahl, M., Cho, H. H., Bandyopadhyay, S., Cuny, G. D., Bush, A. I., Goldstein, L. E., Westaway, D., Huang, X., & Rogers, J. T. (2006). RNA therapeutics directed to the non coding regions of APP mRNA, in vivo anti-amyloid efficacy of paroxetine, erythromycin, and N-acetyl cysteine. Current Alzheimer Research, 3, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Urrutia, P., Aguirre, P., Esparza, A., Tapia, V., Mena, N. P., Arredondo, M., Gonzalez-Billault, C., & Nunez, M. T. (2013). Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. Journal of Neurochemistry, 126, 541–549.

    Article  CAS  PubMed  Google Scholar 

  • Urrutia, P. J., Aguirre, P., Tapia, V., Carrasco, C. M., Mena, N. P., & Nunez, M. T. (2017). Cell death induced by mitochondrial complex I inhibition is mediated by Iron Regulatory Protein 1. Biochimica et Biophysica Acta, 1863, 2202.

    Article  CAS  PubMed  Google Scholar 

  • Urrutia, P. J., Bórquez, D. A., & Núñez, M. T. (2021). Inflaming the brain with iron. Antioxidants (Basel, Switzerland), 10, 61.

    CAS  Google Scholar 

  • Vela, D. (2018). The dual role of hepcidin in brain iron load and inflammation. Frontiers in Neuroscience, 12, 740.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Song, N., Jiang, H., & Xie, J. (2013). Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons. Biochimica et Biophysica Acta, 1832, 618–625.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. M., Fu, L. J., Duan, X. L., Crooks, D. R., Yu, P., Qian, Z. M., Di, X. J., Li, J., Rouault, T. A., & Chang, Y. Z. (2010). Role of hepcidin in murine brain iron metabolism. Cellular and Molecular Life Sciences: CMLS, 67, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Xing, Y., Sapuan, A., Dineen, R. A., & Auer, D. P. (2018). Life span pigmentation changes of the substantia nigra detected by neuromelanin-sensitive MRI. Movement Disorders: Official Journal of the Movement Disorder Society, 33, 1792–1799.

    Article  CAS  Google Scholar 

  • Xu, Y., Zhang, Y., Zhang, J. H., Han, K., Zhang, X., Bai, X., You, L. H., Yu, P., Shi, Z., Chang, Y. Z., & Gao, G. (2020). Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice. Free Radical Biology and Medicine, 158, 84–95.

    Article  CAS  PubMed  Google Scholar 

  • You, L. H., Yan, C. Z., Zheng, B. J., Ci, Y. Z., Chang, S. Y., Yu, P., Gao, G. F., Li, H. Y., Dong, T. Y., & Chang, Y. Z. (2017). Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death & Disease, 8, e2676.

    Article  CAS  Google Scholar 

  • Zecca, L., Gallorini, M., Schunemann, V., Trautwein, A. X., Gerlach, M., Riederer, P., Vezzoni, P., & Tampellini, D. (2001). Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: Consequences for iron storage and neurodegenerative processes. Journal of Neurochemistry, 76, 1766–1773.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D. L., Hughes, R. M., Ollivierre-Wilson, H., Ghosh, M. C., & Rouault, T. A. (2009). A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metabolism, 9, 461–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, P., Chen, L., Zhao, Q., Du, X., Bi, M., Li, Y., Jiao, Q., & Jiang, H. (2020). Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson’s disease. Free Radical Biology and Medicine, 152, 227–234.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the FONDECYT Initiation in Research, grant number 11201141, awarded to P.J.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco T. Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Urrutia, P.J., Bórquez, D., Núñez, M.T. (2021). Iron Neurotoxicity in Parkinson’s Disease. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics