Skip to main content

Vascular Access

  • Living reference work entry
  • First Online:
Pediatric Surgical Oncology
  • 73 Accesses

Abstract

Safe, painless, and long-term central venous access is an essential component of modern pediatric oncological care. Modern catheters and devices and sophisticated, minimally invasive access techniques make vascular access possible even in patients with very small vessels and allow for repeated blood sampling and administration of chemotherapeutic and vasoactive drugs and other drugs without the trauma and other problems associated with repeated needling.

There are numerous device options, access sites, and placement techniques available to treatment teams, and the most appropriate plan for each patient should be formulated based on individual patient need, local facilities and device availability, and physician skill-set. Central venous access devices (CVADs) may be broadly categorized into non-tunneled, tunneled, and totally implantable devices, each having their own relative advantages and disadvantages. All are designed to provide safe, long-term access.

Typically, CVADs are placed using radiologically assisted minimally invasive techniques, but in certain patients and certain circumstances, surgeons or interventionists may opt for open cut-down techniques or percutaneous placement using landmark techniques. The placement and care of long-term CVADs relies on an understanding of the associated complications which may occur at time of insertion or in the following weeks and months. Robust line care bundles, hospital infection control policies, and staff, patient, and caregiver training and education are essential to the successful use of these devices.

This chapter discusses indications for central venous access in the oncology patient, patient and device selection, insertion techniques, complications, and their prevention and highlights adaptations required in resource-constrained environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Anonymous. An account of the rise and attempts, of a way to conveigh liquors immediately into the mass of blood. Philos Trans R Soc London [Internet]. 115(1):128–30. Available from: http://rsta.royalsocietypublishing.org/content/183/1

  2. Rivera AM, Strauss KW, Van Zundert A, Mortier E. The history of peripheral intravenous catheters : How little plastic tubes revolutionized medicine. Acta Anaesthesiol Belg. 2005;56(3):271–82.

    CAS  Google Scholar 

  3. Massa DJ, Lundy JS, Faulconer A, Ridley RW. A plastic needle. Proc Staff Meet Mayo Clin [Internet]. 1950;25(14):413–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15430460

    CAS  Google Scholar 

  4. English ICW, Frew RM, Pigott JFG, Zaki M. Percutaneous cannulation of the internal jugular vein. Thorax [Internet]. 1969;24(4):496–7. Available from: https://thorax.bmj.com/lookup/doi/10.1136/thx.24.4.496

    Article  CAS  Google Scholar 

  5. Doby T. A tribute to Sven-Ivar Seldinger. Am J Roentgenol. 1984;142(1):1–4.

    Article  CAS  Google Scholar 

  6. Vazquez RM. Subclavian catheterization using the peel away sheath. Surg Gynecol Obstet [Internet]. 1981;153(6):852–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7302810

    CAS  Google Scholar 

  7. Broviac JW, Cole JJ, Scribner BH. A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet [Internet]. 1973;136(4):602–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4632149

    CAS  Google Scholar 

  8. Niederhuber JE, Ensminger W, Gyves JW, Liepman M, Doan K, Cozzi E. Totally implanted venous and arterial access system to replace external catheters in cancer treatment. Surgery [Internet]. 1982;92(4):706–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7123491

    CAS  Google Scholar 

  9. Milford K, von Delft D, Majola N, Cox S. Long-term vascular access in differently resourced settings: a review of indications, devices, techniques, and complications. Pediatr Surg Int [Internet]. 2020;36(5):551–62. https://doi.org/10.1007/s00383-020-04640-0.

    Article  Google Scholar 

  10. Crocoli A, Tornesello A, Pittiruti M, Barone A, Muggeo P, Inserra A, et al. Central venous access devices in pediatric malignancies: a position paper of Italian association of pediatric hematology and oncology. J Vasc Access. 2015;16(2):130–6.

    Article  Google Scholar 

  11. Matsuzaki A, Suminoe A, Koga Y, Hatano M, Hattori S, Hara T. Long-term use of peripherally inserted central venous catheters for cancer chemotherapy in children. Support Care Cancer [Internet]. 2006;14(2):153–60. Available from: http://springerlink.bibliotecabuap.elogim.com/10.1007/s00520-005-0848-x

    Article  Google Scholar 

  12. Kolacek S, Puntis JWL, Hojsak I. ESPGHAN / ESPEN / ESPR / CSPEN guidelines on pediatric parenteral nutrition : venous access. Clin Nutr. 2018;37:2379–91.

    Article  CAS  Google Scholar 

  13. Pittiruti M, Hamilton H, Biffi R, MacFie J, Pertkiewicz M. ESPEN Guidelines on Parenteral Nutrition: Central Venous Catheters (access, care, diagnosis and therapy of complications). Clin Nutr [Internet]. 2009;28(4):365–77. https://doi.org/10.1016/j.clnu.2009.03.015.

    Article  Google Scholar 

  14. Guiffant G, Flaud P, Royon L, Burnet E, Merckx J. Mechanical characteristics of plastic base ports and impact on flushing efficacy. Med Devices Evid Res [Internet]. 2017;10:11–5. Available from: https://www.dovepress.com/mechanical-characteristics-of-plastic-base-ports-and-impact-on-flushin-peer-reviewed-article-MDER

    Article  CAS  Google Scholar 

  15. Hodson J. The case for using implanted ports. Br J Nurs [Internet]. 2019;28(Sup14a):S3–10. Available from: http://www.magonlinelibrary.com/doi/10.12968/bjon.2019.28.Sup14a.S3

    Article  Google Scholar 

  16. Baskin KM, Mermel LA, Saad TF, Journeycake JM, Schaefer CM, Modi BP, et al. Evidence-based strategies and recommendations for preservation of Central venous access in children. J Parenter Enter Nutr. 2019;43(5):591–614.

    Article  Google Scholar 

  17. VanHouwelingen LT, Veras LV, Lu M, Wynn L, Wu J, Prajapati HJ, et al. Neutropenia at the time of subcutaneous port insertion may not be a risk factor for early infectious complications in pediatric oncology patients. J Pediatr Surg [Internet]. 2019;54(1):145–9. https://doi.org/10.1016/j.jpedsurg.2018.10.024.

    Article  Google Scholar 

  18. Breiner SM. Preparation of the pediatric patient for invasive procedures. J Infus Nurs [Internet]. 2009;32(5):252–6. Available from: https://journals.lww.com/00129804-200909000-00005

    Article  Google Scholar 

  19. Iserson KVJ-F-B. Charrière: The man behind the “French” gauge. J Emerg Med. 1987;5(6):545–8.

    Article  CAS  Google Scholar 

  20. King DS, da Cruz E, Kaufman J. A model for a nurse-led programme of bedside placement of peripherally inserted central catheters in neonates and infants with congenital cardiac disease. Cardiol Young [Internet]. 2010;20(03):302–7. Available from: http://www.journals.cambridge.org/abstract_S1047951110000090

    Article  Google Scholar 

  21. Callejas A, Osiovich H, Ting JY. Use of peripherally inserted central catheters (PICC) via scalp veins in neonates. J Matern Neonatal Med [Internet]. 2016;29(21):1–21. Available from: http://www.tandfonline.com/doi/full/10.3109/14767058.2016.1139567

    Google Scholar 

  22. LaRusso K, Schaack G, Fung T, McGregor K, Long J, Dumas M, et al. Should you pick the PICC? Prolonged use of peripherally inserted central venous catheters in children with intestinal failure. J Pediatr Surg [Internet]. 2019;54(5):999–1004. https://doi.org/10.1016/j.jpedsurg.2019.01.052.

    Article  Google Scholar 

  23. Perin G, Scarpa M. Defining Central venous line position in children: tips for the tip. J Vasc Access [Internet]. 2015;16(2):77–86. Available from: http://journals.sagepub.com/doi/10.5301/jva.5000285

    Article  Google Scholar 

  24. Vierboom L, Darani A, Langusch C, Soundappan S, Karpelowsky J. Tunnelled central venous access devices in small children: a comparison of open vs. ultrasound-guided percutaneous insertion in children weighing ten kilograms or less. J Pediatr Surg [Internet]. 2018;53(9):1832–8. https://doi.org/10.1016/j.jpedsurg.2018.03.025.

    Article  Google Scholar 

  25. Brown RA, Millar AJW, Knobel J, Cywes S. Central venous catheters. Technique and experience at Red Cross War Memorial Children’s Hospital, Cape Town, 1987–1990. South African Med J [Internet]. 1991;80(1):11–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1905843

    CAS  Google Scholar 

  26. Majola N, Machaea S, Chitnis M, Lazarus C. Audit of complications associated with cut-down central catheters ( CVC ) in a neonatal ICU. In: Conference Abstract: Annual Conference of the South African Association of Paediatric Surgeons, Durban. 2016. p. 5–6.

    Google Scholar 

  27. Sigaut S, Skhiri A, Stany I, Golmar J, Nivoche Y, Constant I, et al. Ultrasound guided internal jugular vein access in children and infant: a meta-analysis of published studies. Pediatr Anesth. 2009;19:1199–206.

    Article  Google Scholar 

  28. Oulego-Erroz I, González-Cortes R, García-Soler P, Balaguer-Gargallo M, Frías-Pérez M, Mayordomo-Colunga J, et al. Ultrasound-guided or landmark techniques for central venous catheter placement in critically ill children. Intensive Care Med [Internet]. 2018;44(1):61–72. Available from: http://springerlink.bibliotecabuap.elogim.com/10.1007/s00134-017-4985-8

    Article  Google Scholar 

  29. Carter JH, Langley JM, Kuhle S, Kirkland S. Risk factors for central venous catheter–associated bloodstream infection in pediatric patients: a cohort study. Infect Control Hosp Epidemiol [Internet]. 2016;37(8):939–45. Available from: https://www.cambridge.org/core/product/identifier/S0899823X16000830/type/journal_article

    Article  Google Scholar 

  30. Newman N, Issa A, Greenberg D, Kapelushnik J, Cohen Z, Leibovitz E. Central venous catheter-associated bloodstream infections. Pediatr Blood Cancer [Internet]. 2012;59(2):410–4. Available from: http://doi.wiley.com/10.1002/pbc.24135

    Article  Google Scholar 

  31. Zanolla GR, Baldisserotto M, Piva J. How useful is ultrasound guidance for internal jugular venous access in children? J Pediatr Surg [Internet]. 2018;53(4):789–93. https://doi.org/10.1016/j.jpedsurg.2017.08.010.

    Article  Google Scholar 

  32. Filston HC, Grant JP. A safer system for percutaneous subclavian venous catheterization in newborn infants. J Pediatr Surg [Internet]. 1979;14(5):564–70. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022346879801414

    Article  CAS  Google Scholar 

  33. Putigna F, Kim ES. Central Venous Access in the Pediatric Patient [Internet]. Medscape. 2018. Available from: https://emedicine.medscape.com/article/940865-overview#a111/4.

  34. Rosenthal VD. Central line–associated bloodstream infections in limited-resource countries: a review of the literature. Clin Infect Dis [Internet]. 2009;49(12):1899–907. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/648439

    Article  Google Scholar 

  35. Raad I, Hanna HA, Awad A, Alrahwan A, Bivins C, Khan A, et al. Optimal frequency of changing intravenous administration sets: is it safe to prolong use beyond 72 hours? Infect Control Hosp Epidemiol [Internet]. 2001;22(03):136–9. Available from: https://www.cambridge.org/core/product/identifier/S0195941700069137/type/journal_article

    Article  CAS  Google Scholar 

  36. Hartman C, Shamir R, Simchowitz V, Lohner S, Cai W. ESPGHAN / ESPEN / ESPR / CSPEN guidelines on pediatric parenteral nutrition: complications. Clin Nutr. 2018;37:2418–29.

    Article  Google Scholar 

  37. Raad I. Intravascular-catheter-related infections. Lancet. 1998;351(893–898)

    Google Scholar 

  38. Lai NM, Chaiyakunapruk N, Lai NA, O’Riordan E, Pau WSC, Saint S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev [Internet]. 2016. Available from: http://doi.wiley.com/10.1002/14651858.CD007878.pub3

  39. Dandoy CE, Hausfeld J, Flesch L, Hawkins D, Demmel K, Best D, et al. Rapid cycle development of a multifactorial intervention achieved sustained reductions in central line-associated bloodstream infections in haematology oncology units at a children’s hospital: a time series analysis. BMJ Qual Saf [Internet]. 2016;25(8):633–43. Available from: http://qualitysafety.bmj.com/lookup/doi/10.1136/bmjqs-2015-004450

    Article  Google Scholar 

  40. Bundy DG, Gaur AH, Billett AL, He B, Colantuoni EA, Miller MR. Preventing CLABSIs among pediatric hematology/oncology inpatients: national collaborative results. Pediatrics [Internet]. 2014;134(6):e1678–85. Available from: http://pediatrics.aappublications.org/lookup/doi/10.1542/peds.2014-0582

    Article  Google Scholar 

  41. Norris LB, Kablaoui F, Brilhart MK, Bookstaver PB. Systematic review of antimicrobial lock therapy for prevention of central-line-associated bloodstream infections in adult and pediatric cancer patients. Int J Antimicrob Agents [Internet]. 2017;50(3):308–17. https://doi.org/10.1016/j.ijantimicag.2017.06.013.

    Article  CAS  Google Scholar 

  42. Wales PW, Kosar C, Carricato M, de Silva N, Lang K, Avitzur Y. Ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients with intestinal failure: preliminary experience. J Pediatr Surg [Internet]. 2011;46(5):951–6. https://doi.org/10.1016/j.jpedsurg.2011.02.036.

    Article  Google Scholar 

  43. Ullman AJ, Marsh N, Mihala G, Cooke M, Rickard CM. Complications of Central venous access devices: a systematic review. Pediatrics [Internet]. 2015;136(5):e1331–44. Available from: http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2015-1507

    Article  Google Scholar 

  44. Ast D, Ast T. Nonthrombotic complications related to Central vascular access devices. J Infus Nurs [Internet]. 2014;37(5):349–58. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00129804-201409000-00004

    Article  Google Scholar 

  45. Giordano P, Saracco P, Grassi M, Luciani M, Banov L, Carraro F, et al. Recommendations for the use of long-term central venous catheter (CVC) in children with hemato-oncological disorders: management of CVC-related occlusion and CVC-related thrombosis. On behalf of the coagulation defects working group and the supportive the. Ann Hematol [Internet]. 2015;94(11):1765–76. Available from: http://springerlink.bibliotecabuap.elogim.com/10.1007/s00277-015-2481-1

    Article  Google Scholar 

  46. Baskin JL, Pui C, Reiss U, Wilimas JA, Metzger ML, Ribeiro RC, et al. Management of occlusion and thrombosis associated with long-term indwelling central venous catheters. Lancet [Internet]. 2009;374(9684):159–69. https://doi.org/10.1016/S0140-6736(09)60220-8.

    Article  Google Scholar 

  47. Molinari AC, Saracco P, Cecinati V, Miano M, Parodi E, Grassi M, et al. Venous thrombosis in children. Blood Coagul Fibrinolysis [Internet]. 2011;22(5):351–61. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001721-201107000-00001

    Article  Google Scholar 

  48. Manco-Johnson MJ. How I treat venous thrombosis in children. Blood [Internet]. 2006;107(1):21–9. Available from: http://www.bloodjournal.org/lookup/doi/10.1182/blood-2004-11-4211

    Article  CAS  Google Scholar 

  49. de Buys Roessingh AS, Portier-Marret N, Tercier S, Qanadli SD, Joseph J-M. Combined endovascular and surgical recanalization after central venous catheter-related obstructions. J Pediatr Surg [Internet]. 2008;43(6):e21–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022346808001334

    Article  Google Scholar 

  50. Deitcher SR, Fesen MR, Kiproff PM, Hill PA, Li X, McCluskey ER, et al. Safety and efficacy of Alteplase for restoring function in occluded Central venous catheters: results of the cardiovascular thrombolytic to open occluded lines trial. J Clin Oncol [Internet]. 2002;20(1):317–24. Available from: http://ascopubs.org/doi/10.1200/JCO.2002.20.1.317

    Article  CAS  Google Scholar 

  51. Blaney M, Shen V, Kerner JA, Jacobs BR, Gray S, Armfield J, et al. Alteplase for the treatment of Central venous catheter occlusion in children: results of a prospective, open-label, single-arm study (The Cathflo Activase pediatric study). J Vasc Interv Radiol [Internet]. 2006;17(11):1745–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1051044307611919

    Article  Google Scholar 

  52. Orsi F, Grasso RF, Arnaldi P, Bonifacio C, Biffi R, De Braud F, et al. Ultrasound guided versus direct vein puncture in central venous port placement. J Vasc Access [Internet]. 2000;1(2):73–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17638229

    Article  CAS  Google Scholar 

  53. Rossi UG, Torcia P, Rigamonti P, Colombo F, Giordano A, Gallieni M, et al. Tunneled Central venous catheter exchange: techniques to improve prevention of air embolism. J Vasc Access [Internet]. 2016;17(2):200–3. Available from: http://journals.sagepub.com/doi/10.5301/jva.5000483

    Article  Google Scholar 

  54. Tsotsolis N, Tsirgogianni K, Kioumis I, Pitsiou G, Baka S, Karavergou A, et al. Pneumothorax as a complication of central venous catheter insertion. Ann Transl Med. 2015;3(3):1–10.

    Google Scholar 

  55. Haass C, Sorrentino E, Tempera A, Consigli C, de Paola D, Calcagni G, et al. Cardiac tamponade and bilateral pleural effusion in a very low birth weight infant. J Matern Neonatal Med [Internet]. 2009;22(2):137–9. Available from: http://www.tandfonline.com/doi/full/10.1080/14767050802509561

    Article  Google Scholar 

  56. Gabelmann A, Kramer S, Gorich J. Percutaneous retrieval of lost or misplaced intravascular objects. Am J Roentgenol [Internet]. 2001;176(6):1509–13. Available from: http://www.ajronline.org/doi/10.2214/ajr.176.6.1761509

    Article  CAS  Google Scholar 

  57. Chan BKY, Rupasinghe SN, Hennessey I, Peart I, Baillie CT. Retained central venous lines (CVLs) after attempted removal: an 11-year series and literature review. J Pediatr Surg [Internet]. 2013;48(9):1887–91. https://doi.org/10.1016/j.jpedsurg.2013.01.050.

    Article  CAS  Google Scholar 

  58. Walshe C, Phelan D, Bourke J, Buggy D. Vascular erosion by central venous catheters used for total parenteral nutrition. Intensive Care Med [Internet]. 2007;33(3):534–7. Available from: http://springerlink.bibliotecabuap.elogim.com/10.1007/s00134-006-0507-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Cox .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cox, S., Milford, K. (2022). Vascular Access. In: Lakhoo, K., Abdelhafeez, A.H., Abib, S. (eds) Pediatric Surgical Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-71113-9_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71113-9_91-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71113-9

  • Online ISBN: 978-3-030-71113-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics