Skip to main content

Drug Design and Discovery: Theory, Applications, Open Issues and Challenges

  • Chapter
  • First Online:
Metaheuristics in Machine Learning: Theory and Applications
  • The original version of this chapter was revise. The author M. Hassaballah’s affiliation has been updated with new affiliation. The correction to this chapter can be found at https://doi.org/10.1007/978-3-030-70542-8_31

Abstract

Cheminformatics has the major research factors that lead to the importance of similarity measurements for drugs and increase the chemical compound on databases search. The previous method is used for predicting the design of drugs and is comparatively efficient and less weak. Drug design is the process for finding new medications depended on the collected knowledge about a biological target. This chapter introduces several Metaheuristics Algorithms (MA), and Machine Learning (ML) techniques are used to design and discover new drug compounds in Cheminformatics. The balance of exploration and exploitation processes of MA’s are convenient for selecting the significant features as preprocessing to ML step for accomplishing high classification accuracy to the active chemical compound. In consequence, the results of the drug designed aim an optimal compound and enhanced the chemical descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 11 October 2021

    The original version of the book was published with incorrect affiliation for the author M. Hassaballah. Affiliation has been updated with correct affiliation for the following chapters:

References

  1. P. Willett, Chemoinformatics (2016)

    Google Scholar 

  2. A. Lavecchia, Machine-learning approaches in drug discovery: methods and applications. Drug Discov. Today 20(3), 318–331 (2015)

    Article  Google Scholar 

  3. T. Katsila, G.A. Spyroulias, G.P. Patrinos, M.-T. Matsoukas, Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J. 14, 177–184 (2016)

    Article  Google Scholar 

  4. A.U. Khan et al., Descriptors and their selection methods in qsar analysis: paradigm for drug design. Drug Discov. Today 21(8), 1291–1302 (2016)

    Article  Google Scholar 

  5. S. Yuan, H.S. Chan, S. Filipek, H. Vogel, Pymol and inkscape bridge the data and the data visualization. Structure 24(12), 2041–2042 (2016)

    Article  Google Scholar 

  6. S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell, A.J. Olson, Computational protein-ligand docking and virtual drug screening with the autodock suite. Nat. Protocols 11(5), 905 (2016)

    Article  Google Scholar 

  7. M. García-Torres, F. Gómez-Vela, B. Melián-Batista, J.M. Moreno-Vega, High-dimensional feature selection via feature grouping: A variable neighborhood search approach. Inf. Sci. 326, 102–118 (2016)

    Article  MathSciNet  Google Scholar 

  8. E.H. Houssein, M. Younan, A.E. Hassanien, Nature-inspired algorithms: a comprehensive review. Hybrid Computational Intelligence: Research and Applications, p. 1 (2019)

    Google Scholar 

  9. N. Siddique, H. Adeli, Nature-inspired chemical reaction optimisation algorithms. Cogn. Comput. 9(4), 411–422 (2017)

    Article  Google Scholar 

  10. A.E. Hassanien, M. Kilany, E.H. Houssein, H. AlQaheri, Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression. Biomed. Sig. Process. Control 45, 182–191 (2018)

    Article  Google Scholar 

  11. E.H. Houssein, A.A. Ewees, M.A. ElAziz, Improving twin support vector machine based on hybrid swarm optimizer for heartbeat classification. Pattern Recogn. Image Anal. 28(2), 243–253 (2018)

    Article  Google Scholar 

  12. A. Tharwat, Y.S. Moemen, A.E. Hassanien, Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines. J. Biomed. Inf. 68, 132–149 (2017)

    Article  Google Scholar 

  13. C.C. Aquino, S.H. Fox, Clinical spectrum of levodopa-induced complications. Mov. Disord. 30(1), 80–89 (2015)

    Article  Google Scholar 

  14. J.-P. Renaud, C.-W. Chung, U.H. Danielson, U. Egner, M. Hennig, R.E. Hubbard, H. Nar, Biophysics in drug discovery: impact, challenges and opportunities. Nat. Rev. Drug Discov. 15(10), 679 (2016)

    Article  Google Scholar 

  15. J. Gasteiger, Chemoinformatics: achievements and challenges, a personal view. Molecules 21(2), 151 (2016)

    Article  Google Scholar 

  16. M.D. Eastgate, M.A. Schmidt, K.R. Fandrick, On the design of complex drug candidate syntheses in the pharmaceutical industry. Nat. Rev. Chem. 1(2), 0016 (2017)

    Article  Google Scholar 

  17. S.K. Burley, H.M. Berman, C. Bhikadiya, C. Bi, L. Chen, L. Di Costanzo, C. Christie, K. Dalenberg, J.M. Duarte, S. Dutta et al., Rcsb protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 47(D1), D464–D474 (2018)

    Article  Google Scholar 

  18. M.A. Toropova, A.M. Veselinović, J.B. Veselinović, D.B. Stojanović, A.A. Toropov, Qsar modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids. Comput. Biol. Chem. 59, 126–130 (2015)

    Article  Google Scholar 

  19. V.H. Masand, V. Rastija, Pydescriptor: a new pymol plugin for calculating thousands of easily understandable molecular descriptors. Chemometr. Intell. Lab. Syst. 169, 12–18 (2017)

    Article  Google Scholar 

  20. P. Prajapat, S. Agarwal, G. Talesara, Significance of computer aided drug design and 3d qsar in modern drug discovery. J. Med. Org. Chem. 1(1), 1 (2017)

    Google Scholar 

  21. A.G. Hussien, A.E. Hassanien, E.H. Houssein, Swarming behaviour of salps algorithm for predicting chemical compound activities, in 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (IEEE, 2017) pp. 315–320

    Google Scholar 

  22. L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Artificial Intelligence and Soft Computing: Proceedings of 16th International Conference, ICAISC 2017, vol. 10246, Zakopane, Poland, 11–15 June 2017 (Springer, 2017)

    Google Scholar 

  23. A. Maseleno, N. Sabani, M. Huda, R. Ahmad, K.A. Jasmi, B. Basiron, Demystifying learning analytics in personalised learning. Int. J. Eng. Technol. 7(3), 1124–1129 (2018)

    Article  Google Scholar 

  24. F. Han, C. Yang, Y.-Q. Wu, J.-S. Zhu, Q.-H. Ling, Y.-Q. Song, D.-S. Huang, A gene selection method for microarray data based on binary pso encoding gene-to-class sensitivity information. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 85–96 (2017)

    Article  Google Scholar 

  25. R. Rodríguez-Perez, M. Vogt, J. Bajorath, Support vector machine classification and regression prioritize different structural features for binary compound activity and potency value prediction. ACS Omega 2(10), 6371–6379 (2017)

    Article  Google Scholar 

  26. K. Sörensen, M. Sevaux, F. Glover, A history of metaheuristics, in Handbook of heuristics (2018), pp. 1–18

    Google Scholar 

  27. K. Hussain, M.N.M. Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)

    Article  Google Scholar 

  28. M. Ghaemi, M.-R. Feizi-Derakhshi, Feature selection using forest optimization algorithm. Pattern Recogn. 60, 121–129 (2016)

    Article  Google Scholar 

  29. M. Ghosh, R. Guha, R. Sarkar, A. Abraham, A wrapper-filter feature selection technique based on ant colony optimization, in Neural Computing and Applications (2019), pp. 1–19

    Google Scholar 

  30. I. Aljarah, A.-Z. AlaM, H. Faris, M.A. Hassonah, S. Mirjalili, H. Saadeh, Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn. Comput. 10(3), 478–495 (2018)

    Article  Google Scholar 

  31. R.V. Devi, S.S. Sathya, M.S. Coumar, Evolutionary algorithms for de novo drug design-a survey. Appl. Soft Comput. 27, 543–552 (2015)

    Article  Google Scholar 

  32. B. Jia, A.R. Raphenya, B. Alcock, N. Waglechner, P. Guo, K.K. Tsang, B.A. Lago, B.M. Dave, S. Pereira, A.N. Sharma et al., Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. p. gkw1004 (2016)

    Google Scholar 

  33. S.C.W. Peh, J.L. Hong, Bacteria foraging optimization for drug design, in International Conference on Computational Science and Its Applications (Springer, 2016), pp. 322–331

    Google Scholar 

  34. R. Chen, X. Liu, S. Jin, J. Lin, J. Liu, Machine learning for drug-target interaction prediction. Molecules 23(9), 2208 (2018)

    Article  Google Scholar 

  35. P.-A. Grenier, L. Brun, D. Villemin, Chemoinformatics and stereoisomerism: a stereo graph kernel together with three new extensions. Pattern Recogn. Lett. 87, 222–230 (2017)

    Article  Google Scholar 

  36. J.K. Yella, S. Yaddanapudi, Y. Wang, A.G. Jegga, Changing trends in computational drug repositioning. Pharmaceuticals 11(2), 57 (2018)

    Article  Google Scholar 

  37. A.M. Dar, S. Mir, Molecular docking: approaches, types, applications and basic challenges. J. Anal. Bioanal. Tech. 8(2), 356 (2017)

    Article  Google Scholar 

  38. N.S. Pagadala, K. Syed, J. Tuszynski, Software for molecular docking: a review. Biophys. Rev. 9(2), 91–102 (2017)

    Article  Google Scholar 

  39. Y. Ma, H.-L. Li, X.-B. Chen, W.-Y. Jin, H. Zhou, R.-L. Wang, 3d qsar pharmacophore based virtual screening for identification of potential inhibitors for cdc25b. Comput. Biol. Chem. 73, 1–12 (2018)

    Article  Google Scholar 

  40. I.L. Ruiz, M.A. Gomez-Nieto, Advantages of relative versus absolute data for the development of quantitative structure-activity relationship classification models. J. Chem. Inf. Model. 57(11), 2776–2788 (2017)

    Article  Google Scholar 

  41. I. Ponzoni, V. Sebastián-Pérez, C. Requena-Triguero, C. Roca, M.J. Martínez, F. Cravero, M.F. Díaz, J.A. Páez, R.G. Arrayás, J. Adrio et al., Hybridizing feature selection and feature learning approaches in qsar modeling for drug discovery. Sci. Rep. 7(1), 2403 (2017)

    Article  Google Scholar 

  42. M.H. Fatemi, A. Heidari, S. Gharaghani, Qsar prediction of hiv-1 protease inhibitory activities using docking derived molecular descriptors. J. Theor. Biol. 369, 13–22 (2015)

    Article  MATH  Google Scholar 

  43. Y.S. Is, S. Durdagi, B. Aksoydan, M. Yurtsever, Proposing novel mao-b hit inhibitors using multidimensional molecular modeling approaches and application of binary qsar models for prediction of their therapeutic activity, pharmacokinetic and toxicity properties. ACS Chem. Neurosci. 9(7), 1768–1782 (2018)

    Article  Google Scholar 

  44. R. Satpathy, Quantitative structure-activity modelling of toxic compounds, in Nanotechnology, Food Security and Water Treatment (Springer, 2018), pp. 313–331

    Google Scholar 

  45. A. Del Rio, G. Varchi, Molecular design of compounds targeting histone methyltransferases, in Epi-Informatics (Elsevier, 2016), pp. 257–272

    Google Scholar 

  46. E. Di Muzio, D. Toti, F. Polticelli, Dockingapp: a user friendly interface for facilitated docking simulations with autodock vina. J. Comput.-Aided Mol. Des. 31(2), 213–218 (2017)

    Article  Google Scholar 

  47. Z. Wang, H. Sun, X. Yao, D. Li, L. Xu, Y. Li, S. Tian, T. Hou, Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 18(180), 12964–12975 (2016)

    Article  Google Scholar 

  48. M.C. Ng, S. Fong, S.W. Siu, Psovina: The hybrid particle swarm optimization algorithm for protein-ligand docking. J. Bioinform. Comput. Biol. 13(03), 1541007 (2015)

    Article  Google Scholar 

  49. Y. Liu, L. Zhao, W. Li, D. Zhao, M. Song, Y. Yang, Fipsdock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J. Comput. Chem. 34(1), 67–75 (2013)

    Article  Google Scholar 

  50. H. Lin, S. Siu, A hybrid cuckoo search and differential evolution approach to protein-ligand docking. Int. J. Mol. Sci. 19(10), 3181 (2018)

    Article  Google Scholar 

  51. B. Jiménez-García, J. Roel-Touris, M. Romero-Durana, M. Vidal, D. Jiménez-González, J. Fernández-Recio, Lightdock: a new multi-scale approach to protein-protein docking. Bioinformatics 34(1), 49–55 (2017)

    Article  Google Scholar 

  52. T.R. Law, J. Hancox, S.A. Wright, S. Jarvis, An algorithm for computing short-range forces in molecular dynamics simulations with non-uniform particle densities. J. Parallel Distrib. Comput. 130, 1–11 (2019)

    Article  Google Scholar 

  53. A. Kumar, G. Srivastava, A.S. Negi, A. Sharma, Docking, molecular dynamics, binding energy-mm-pbsa studies of naphthofuran derivatives to identify potential dual inhibitors against bace-1 and gsk-3\(\beta \). J. Biomol. Struct. Dyn. 37(2), 275–290 (2019)

    Article  Google Scholar 

  54. D. Prada-Gracia, S. Huerta-Yépez, L.M. Moreno-Vargas, Application of computational methods for anticancer drug discovery, design, and optimization. Boletín Médico Del Hospital Infantil de México (English Edition) 73(6), 411–423 (2016)

    Article  Google Scholar 

  55. C. Anusha, Z. Halidha, T. Radha, M. Balaji, Identification of insilico drugs and drug docking studies on hypothyroidism and inferility disorders in human. Int. J. Novel Trends Pharm. Sci. 5(3), 42–54 (2015)

    Google Scholar 

  56. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  57. M.A. Elaziz, Y.S. Moemen, A.E. Hassanien, S. Xiong, Quantitative structure-activity relationship model for hcvns5b inhibitors based on an antlion optimizer-adaptive neuro-fuzzy inference system. Sci. Rep. 8(1), 1506 (2018)

    Article  Google Scholar 

  58. Y.-C. Lo, S.E. Rensi, W. Torng, R.B. Altman, Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 23(8), 1538–1546 (2018)

    Article  Google Scholar 

  59. A.H.A. El-Atta, A.E. Hassanien, Two-class support vector machine with new kernel function based on paths of features for predicting chemical activity. Inf. Sci. 403, 42–54 (2017)

    Article  Google Scholar 

  60. M.J. Martínez, M. Razuc, I. Ponzoni, Modesus: a machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics, in BioMed Research International, vol. 2019 (2019)

    Google Scholar 

  61. A. Ghosh, M. Talukdar, U.K. Roy, Stable drug designing by minimizing drug protein interaction energy using pso (2015). arXiv preprint arXiv:1507.08408

  62. M. Zainudin, M. Sulaiman, N. Mustapha, T. Perumal, A. Nazri, R. Mohamed, S. Manaf, Feature selection optimization using hybrid relief-f with self-adaptive differential evolution. Int. J. Intell. Eng. Syst. 10(3), 21–29 (2017)

    Google Scholar 

  63. E.H. Houssein, M.E. Hosney, D. Oliva, W.M. Mohamed, M. Hassaballah, A novel hybrid harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering 133, 106656 (2020)

    Article  Google Scholar 

  64. M.J. Martínez, J.S. Dussaut, I. Ponzoni, Biclustering as strategy for improving feature selection in consensus qsar modeling. Electron. Notes Discrete Math. 69, 117–124 (2018)

    Article  Google Scholar 

  65. R.I.D. Putra, A.L. Maulana, A.G. Saputro, Study on building machine learning model to predict biodegradable-ready materials, in AIP Conference Proceedings, vol. 2088 (AIP Publishing, 2019), pp. 60003–600010

    Google Scholar 

  66. A. Dutta, P. Riba, J. Lladós, A. Fornés, Hierarchical stochastic graphlet embedding for graph-based pattern recognition (2018). arXiv preprint arXiv:1807.02839

  67. G.B. Goh, K. Sakloth, C. Siegel, A. Vishnu, J. Pfaendtner, Multimodal deep neural networks using both engineered and learned representations for biodegradability prediction (2018). arXiv preprint arXiv:1808.04456

  68. G.B. Goh, C. Siegel, A. Vishnu, N. Hodas, Using rule-based labels for weak supervised learning: a chemnet for transferable chemical property prediction, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2018), pp. 302–310

    Google Scholar 

  69. J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in Advances in Neural Information Processing Systems (2016), pp. 1993–2001

    Google Scholar 

  70. A. Bender, N. Brown, Cheminformatics in drug discovery. ChemMedChem 13(6), 467–469 (2018)

    Article  Google Scholar 

  71. S. Zheng, S. Dharssi, M. Wu, J. Li, Z. Lu, Text mining for drug discovery, in Bioinformatics and Drug Discovery (Springer, 2019), pp. 231–252

    Google Scholar 

  72. S.A. Cashman, D.E. Meyer, A.N. Edelen, W.W. Ingwersen, J.P. Abraham, W.M. Barrett, M.A. Gonzalez, P.M. Randall, G. Ruiz-Mercado, R.L. Smith, Mining available data from the united states environmental protection agency to support rapid life cycle inventory modeling of chemical manufacturing. Environ. Sci. Technol. 50(17), 9013–9025 (2016)

    Article  Google Scholar 

  73. S.K. Burley, H.M. Berman, G.J. Kleywegt, J.L. Markley, H. Nakamura, S. Velankar, Protein data bank (pdb): the single global macromolecular structure archive, in Protein Crystallography (Springer, 2017), pp. 627–641

    Google Scholar 

  74. C.N. Hemalatha, V. Muthukumar, Application of 3d qsar and docking studies in optimization of perylene diimides as anti-cancer agent. Indian J. Pharm. Educ. Res. 52, 666–75 (2018)

    Article  Google Scholar 

  75. S. Xu, J. Fang, and X.-Y. Li, “Weighted laplacian and its theoretical applications,” arXiv preprint arXiv:1911.10311, 2019

    Google Scholar 

  76. N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, Open babel: An open chemical toolbox. J. Cheminf. 3(1), 33 (2011)

    Article  Google Scholar 

  77. A. Mauri, V. Consonni, M. Pavan, R. Todeschini, Dragon software: an easy approach to molecular descriptor calculations. MATCH Commun. Math. Comput. Chem. 56, 237–248 (2006)

    MATH  Google Scholar 

  78. H. Moriwaki, Y.-S. Tian, N. Kawashita, T. Takagi, Mordred: a molecular descriptor calculator. J. Cheminf. 10(1), 4 (2018)

    Article  Google Scholar 

  79. O. Korb, T. Stützle, T.E. Exner, An ant colony optimization approach to flexible protein-ligand docking. Swarm Intell. 1(2), 115–134 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam H. Houssein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houssein, E.H., Hosney, M.E., Oliva, D., Ortega-Sánchez, N., Mohamed, W.M., Hassaballah, M. (2021). Drug Design and Discovery: Theory, Applications, Open Issues and Challenges. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds) Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8_15

Download citation

Publish with us

Policies and ethics