Skip to main content

Advances on Urban Mobility Using Innovative Data-Driven Models

  • Reference work entry
  • First Online:
Handbook of Smart Cities

Abstract

This chapter presents recent experiences using open data from different cities to extract and structure knowledge about several aspects of mobility in urban areas. Most of them are dedicated to Curitiba, Brazil, a large city in Southern Brazil recognized since 1960s as innovative in urban planning and transportation. Three approaches are considered for modeling mobility from open data: complex network models, link stream models, and computing origin–destination in transport and traffic of vehicles. Complex network models of transportation systems reveal structures that characterize patterns in transportation. Links stream models capture the temporal behavior of transportation systems, and provide information about congestion, transfer of passengers, and bunching phenomena. Moreover, this chapter brings research on approaches for characterizing origin and destinations in public and private transport. Based on data from smart card ticketing in public transportation, relevant information is gathered about people using public transport for displacement in different hours of the day. On the other hand, taxi trips recorded during a day can characterize private transport, providing the information to map relevant flows of vehicles in a city with eventual impact on traffic. Results of origin–destination of vehicles in Oporto, Portugal, are presented. The experiences of the successful Smart City Concepts in Curitiba project are reported as well, which represents a triple helix model involving academia, public, and private sectors. Its results are discussed with emphasis on the relationship between partners and how they can be shared across different players that affect urban organization and public policies for urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alic, A. S., Almeida, J. M., Meira, W., Jr., Guedes, D. O., Santos, W., Blanquer, I., Fiore, S., Kozievitch, N. P., Andrade, N., Braz, T., et al. (2018). Gis and data: Three applications to enhance mobility. In GEOINFO (pp. 1–12).

    Google Scholar 

  • Alic, A. S., Almeida, J., Aloisio, G., Andrade, N., Antunes, N., Ardagna, D., Badia, R. M., Basso, T., Blanquer, I., Braz, T., Brito, A., Elia, D., Fiore, S., Guedes, D., Lattuada, M., Lezzi, D., Maciel, M., Meira, W., Mestre, D., Moraes, R., Morais, F., Pires, C. E., Kozievitch, N. P., Santos, W., Silva, P., & Vieira, M. (2019). BIGSEA: A big data analytics platform for public transportation information. Future Generation Computer Systems, 96, 243–269.

    Article  Google Scholar 

  • Allen, T., Grace, C., & Martin, S. (2015). Making the most of research: Final report of the ESRC local government knowledge navigator to the economic and social research council local government association society of local authority chief executives. London: Local Government Knowledge Navigator.

    Google Scholar 

  • Baek, S., Kim, H., & Lim, Y. (2004). Multiple vehicle origin destination matrix estimation from traffic counts using genetic algorithm. Journal of Transportation Engineering, 130(3), 339–347.

    Article  Google Scholar 

  • Bell, M. G. H. (1991). The estimation of origin-destination matrices by constrained generalised least squares. Transportation Research Part B, 25B(1), 13–22.

    Article  MathSciNet  Google Scholar 

  • Bera, S., & Rao, K. V. K. (2011). Estimation of origin-destination matrix from traffic counts: The state of the art. European Transport, 49, 3–23.

    Google Scholar 

  • Braz, T., Maciel, M., Mestre, D. G., Andrade, N., Pires, C. E., Queiroz, A. R., & Santos, V. B. (2018). Estimating inefficiency in bus trip choices from a user perspective with schedule, positioning, and ticketing data. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3630–3641.

    Article  Google Scholar 

  • Breckon, J., & Dodson, J. (2016). Using evidence: What works? London: Alliance for Useful Evidence.

    Google Scholar 

  • Cai, Y. (2014). Implementing the triple helix model in a non-western context: An institutional logics perspective. Triple Helix, 1(1), 1–20.

    Article  Google Scholar 

  • Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data. A generalized least squares estimator. Transportation Research Part B, I(415), 289–299.

    Article  Google Scholar 

  • Cascetta, E., & Nguyen, S. (1988). A unified framework for estimating or updating origin/destination matrices from traffic counts. Transportation Research Part B, 22(6), 437–455.

    Article  MathSciNet  Google Scholar 

  • Costa, L. F., Rodrigues, F. A., Travieso, G., & Villas-Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

    Article  Google Scholar 

  • Costa, R. F., Vieira-Neto, H., & Fonseca, K. V. O. (2017). Automatic vehicle count in multiple climatic and illumination conditions. In Anais do XIII Workshop de Visão Computacional (WVC 2017) (pp. 71–75). Natal, Brazil.

    Google Scholar 

  • Curzel, J. L., Luders, R., Fonseca, K. V. O., & Rosa, M. O. (2019). Temporal performance analysis of bus transportation using link streams. Mathematical Problems in Engineering, 2019, 1–18.

    Article  Google Scholar 

  • De-Bona, A., Fonseca, K. V. O., Rosa, M. O., Lüders, R., & Delgado, M. (2016). Analysis of public bus transportation of a Brazilian city based on the theory of complex networks using the P-space. Mathematical Problems in Engineering, 2016, 1.

    Article  Google Scholar 

  • De-Bona, A., Rosa, M. O., Fonseca, K. V. O., Lüders, R., & Kozievitch, N. P. (2018). Congestion potential –A new way to analyze public transportation based on complex networks. In 2018 IEEE International Smart Cities Conference (ISC2) (pp. 1–8).

    Google Scholar 

  • De-Los-Santos, A., Laporte, G., Mesa, J. A., & Perea, F. (2012). Evaluating passenger robustness in a rail transit network. Transportation Research Part C, 20(1), 34–46, special issue on Optimization in Public Transport+ISTT2011.

    Article  Google Scholar 

  • Dreier, D., Silveira, S., Khatiwada, D., Fonseca, K. V. O., Nieweglowski, R., & Schepanski, R. (2015). Energy use and CO2 emissions of city buses in Curitiba, Brazil. In Systems Analysis 2015. Laxenburg, Austria.

    Google Scholar 

  • Dreier, D., Silveira, S., Khatiwada, D., Fonseca, K. V. O., Nieweglowski, R., & Schepanski, R. (2018). Well-to-wheel analysis of fossil energy use and greenhouse gas emissions for conventional, hybrid-electric and plug-in hybrid-electric city buses in the BRT system in Curitiba, Brazil. Transportation Research Part D: Transport and Environment, 58, 122–138.

    Article  Google Scholar 

  • Dreier, D., Silveira, S., Khatiwada, D., Fonseca, K. V. O., Nieweglowski, R., & Schepanski, R. (2019). The influence of passenger load, driving cycle, fuel price and different types of buses on the cost of transport service in the BRT system in Curitiba, Brazil. Transportation, 46(6), 2195–242.

    Article  Google Scholar 

  • Du, J., & Wei, L. (2009). Quantum behaved particle swarm optimization for origin destination matrix prediction. In 2nd International Conference on Power Electronics and Intelligent Transportation System (Vol. 1, pp. 133–136).

    Google Scholar 

  • Fiore, S., Elia, D., Pires, C. E., Mestre, D. G., Cappiello, C., Vitali, M., Andrade, N., Braz, T., Lezzi, D., Moraes, R., et al. (2019). An integrated big and fast data analytics platform for smart urban transportation management. IEEE Access, 7, 117652–117677.

    Article  Google Scholar 

  • Gallotti, R., & Barthelemy, M. (2014). Anatomy and efficiency of urban multimodal mobility. Scientific Reports, 4, 6911.

    Article  Google Scholar 

  • Gallotti, R., & Barthelemy, M. (2015). The multilayer temporal network of public transport in Great Britain. Science Data, 2, 1–8.

    Article  Google Scholar 

  • Hartigan, J., & Wong, M. (1979). A k-means clustering algorithm. Applied Statistics, 28, 100–108.

    Article  MATH  Google Scholar 

  • Hazelton, M. L. (2008). Statistical inference for time varying origin–destination matrices. Transportation Research Part B, 42, 542–552.

    Article  Google Scholar 

  • HCM. (2000). Highway capacity manual (pp. 1–1207). Transportation Research Board.

    Google Scholar 

  • He, S. X. (2015). An anti-bunching strategy to improve bus schedule and headway reliability by making use of the available accurate information. Computers and Industrial Engineering, 85, 17–32.

    Article  Google Scholar 

  • Hernandez, D., Muñoz, J. C., Giesen, R., & Delgado, F. (2015). Analysis of real-time control strategies in a corridor with multiple bus services. Transportation Research Part B, 78, 83–105.

    Article  Google Scholar 

  • Johann, A., & Sutcliffe, S. (2000). Intelligent transport systems (ITS) – An overview. IFAC Proceedings Volumes, 33, 99–106.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 – International Conference on Neural Networks (Vol. 4, pp. 1942–1948).

    Google Scholar 

  • Koda, A. S. (2018). A computational tool for analysis of time fare integration in Curitiba public transport. Final Project of Computer Engineering Major, Universidade Tecnológica Federal do Paraná.

    Google Scholar 

  • Kozievitch, N. P., Gadda, T. M. C., Fonseca, K. V. O., Rosa, M. O., Gomes, L. C., Jr., & Abkar, M. (2016a). Exploratory analysis of public transportation data in Curitiba. In Anais do XLIII Semináorio Integrado de Software e Hardware (pp. 36–47).

    Google Scholar 

  • Kozievitch, N. P., Gomes-Jr, L. C., Gadda, T. M. C., Fonseca, K. V. O., & Akbar, M. (2016b). Analyzing the acoustic urban environment: A geofencing-centered approach in the Curitiba metropolitan region, Brazil. In 2016 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS) (pp. 1–8).

    Google Scholar 

  • Latapy, M., Viard, J., & Magnien, C. (2018). Stream graphs and link streams for the modeling of interactions over time. Social Network Analysis and Mining, 8(1), 61.

    Article  MATH  Google Scholar 

  • Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87, 198701.

    Article  Google Scholar 

  • Leydesdorff, L., & Deakin, M. (2011). The triple-helix model of smart cities: A neoevolutionary perspective. Journal of Urban Technology, 18(2), 53–63.

    Article  Google Scholar 

  • Lo, H. P., & Chan, C. P. (2003). Simultaneous estimation of an origin – Destination matrix and link choice proportions using traffic counts. Transportation Research Part A, 37, 771–788.

    Google Scholar 

  • Lopez-Ibanez, M., Dubois-Lacoste, J., Caceres, L. P., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3(Suppl. C), 43–58.

    Article  MathSciNet  Google Scholar 

  • Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics Reports, 650, 1–63.

    Article  MathSciNet  Google Scholar 

  • Lucani, D. E., Feher, M., Fonseca, K. V. O., Rosa, M. O., & Despotov, B. (2018). Secure and scalable key value storage for managing big data in smart cities using Intel SGX. In 2018 IEEE International Conference on Smart Cloud (SmartCloud) (pp. 70–76).

    Google Scholar 

  • Maher, M. J. (1983). Inferences on trip matrices from observations on link volumes: A bayesian statistical approach. Transportation Research Part B, 17(6), 435.

    Article  MathSciNet  Google Scholar 

  • Max-Neef, M. A. (2005). Foundations of transdisciplinarity. Ecological Economics, 53(1), 5–16.

    Article  Google Scholar 

  • Molina, M. (2005). An intelligent assistant for public transport management. Advances in Intelligent Computing, Part II, LNCS, 3645, 199–208.

    Article  Google Scholar 

  • Muñoz, J. C., Cortés, C. E., Giesen, R., Sáez, D., Delgado, F., Valencia, F., & Cipriano, A. (2013). Comparison of dynamic control strategies for transit operations. Transportation Research Part C, 28, 101–113.

    Article  Google Scholar 

  • Nihan, N. L., & Davis, G. A. (1987). Recursive estimation of o-d matrices from input output counts. Transportation Research Part B, 21(2), 149–163.

    Article  Google Scholar 

  • Oliveira, I. O., Fonseca, K. V. O., & Minetto, R. (2019a). A two-stream siamese neural network for vehicle re-identification by using non-overlapping cameras. In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 669–673).

    Chapter  Google Scholar 

  • Oliveira, I. O., Laroca, R., Menotti, D., Fonseca, K. V. O., & Minetto, R. (2019b). Vehicle reidentification: Exploring feature fusion using multi-stream convolutional networks. arXiv preprint arXiv:1911.05541.

    Google Scholar 

  • OpenStreetMap contributors: Planet dump. (2018). Retrieved from https://planet.osm.org. https://www.openstreetmap.org

  • Pando, L. U., & Lüders, R. (2017). Estimation of origin-destination matrix from traffic counts in the city of Porto with PSO and taxi trip data. In XIV Encontro Nacional de Inteligência Artificial e Computacional (pp. 901–911).

    Google Scholar 

  • Pando, L. U., Lüders, R., Fonseca, K. V. O., & Rosa, M. O. (2018). Influence of virtual road traffic sensors of Oporto for origin-destination matrix estimation. In Latin America Data Science Workshop (LADaS 2018) (pp. 49–56).

    Google Scholar 

  • Papageorgiou, G., Maimaris, A., Ioannou, P., & Aphamis, T. (2012). Planning for effective bus rapid transit systems: A scenario simulation modelling based approach. In Proceedings of the 13th IFAC Symposium on Control in Transportation Systems (pp. 366–371).

    Google Scholar 

  • Parcianello, Y., Kozievitch, N. P., Fonseca, K. V. O., Rosa, M. O., Gadda, T. M. C., & Malucelli, F. C. (2018). Transportation: An overview from open data approach. In 2018 IEEE International Smart Cities Conference (ISC2) (pp. 1–8).

    Google Scholar 

  • Parry, K., & Hazelton, M. L. (2012). Estimation of origin – Destination matrices from link counts and sporadic routing data. Transportation Research Part B, 46(1), 175–188.

    Article  Google Scholar 

  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  • Prefeitura Municipal de Curitiba. (2013). Memorandum of understanding between Brazilian and Swedish institutions to promote sustainable urban development in Curitiba. http://multimidia.curitiba.pr.gov.br/2016/00180776.pdf

  • Ravasz, E., & Barabási, A. L. (2003). Hierarchical organization in complex networks. Physical Review E, 67, 026112.

    Article  MATH  Google Scholar 

  • Roth, C., Kang, S., Batty, M., & Barthelemy, M. (2012). A long-time limit for world subway networks. Journal of the Royal Society Interface, 9, 2540–2550.

    Article  Google Scholar 

  • Sebastiani, M. T., Lüders, R., & Fonseca, K. V. O. (2016). Evaluating electric bus operation for a real-world BRT public transportation using simulation optimization. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2777–2786.

    Article  Google Scholar 

  • Sen, P., Dasgupta, S., Chatterjee, A., Sreeram, P. A., Mukherjee, G., & Manna, S. S. (2003). Small-world properties of the indian railway network. Physical Review E, 67, 036106.

    Article  Google Scholar 

  • Sherali, H. D., & Hobeika, A. G. (1994). A linear programming approach for synthesizing origin–destination trip tables from link traffic volumes. Transportation Research Part B, 28(3), 213–233.

    Article  Google Scholar 

  • Sherali, H. D., & Park, T. (2001). Estimation of dynamic origin destination trip tables for a general network. Transportation Research Part B, 35, 217–235.

    Article  Google Scholar 

  • Sienkiewicz, J., & Hołyst, J. A. (2005). Statistical analysis of 22 public transport networks in Poland. Physical Review E, 72, 046127.

    Article  Google Scholar 

  • Silva, E. L. C., Fonseca, K. V. O., Rosa, M. O., & Munaretto, A. (2016a). Analysis of Curitiba’s public transport system as a complex network. In International Conference on Transdisciplinary Engineering ISPE-TE (pp. 267–276).

    Google Scholar 

  • Silva, E. L. C., Rosa, M. O., Fonseca, K. V. O., Lüders, R., & Kozievitch, N. P. (2016b). Combining k-means method and complex network analysis to evaluate city mobility. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1666–1671).

    Chapter  Google Scholar 

  • Silveira, S. (2014). Smart city concepts in Curitiba – Innovation for mobility and energy efficiency. https://www.vinnova.se/en/p/smart-city-concepts-in-curitiba-innovation-for-mobility-and-energy-efficiency/

  • Silveira, S. (2019). Smart city concepts in Curitiba-low carbon transport in a digital society. https://www.vinnova.se/en/p/smart-city-concepts-in-curitiba-low-carbon-transport-and-mobility-in-a-digital-society/

  • Silveira, S., & Fonseca, K. V. O. (2014). Smart city concepts in Curitiba –Innovation for sustainable mobility and energy efficiency. https://www.kth.se/en/itm/inst/energiteknik/forskning/ecs/news/smart-city-concepts-in-curitiba-innovation-for-sustainable-mobility-and-energy-efficiency-1.689693

  • Soh, H., Lim, S., Zhang, T., Fu, X., Lee, G. K. K., Hung, T. G. G., Di, P., Prakasam, S., & Wong, L. (2010). Weighted complex network analysis of travel routes on the Singapore public transportation system. Physica A, 389(24), 5852–5863.

    Article  Google Scholar 

  • Solé-Ribalta, A., Gómez, S., & Arenas, A. (2016). Congestion induced by the structure of multiplex networks. Physical Review Letters, 116, 108701.

    Article  Google Scholar 

  • Spiess, H. (1987). A maximum likelihood model for estimating origin-destination matrices. Transportation Research Part B, 21(5), 395–412.

    Article  Google Scholar 

  • UCI: Taxi trip dataset for Oporto, Portugal. (2015). https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+201

  • Viard, J., & Magnien, C. (2017). Source code in python for our algorithm. https://bitbucket.org/tiph_viard/cliques

  • Viard, J., Latapy, M., & Magnien, C. (2015). Revealing contact patterns among high-school students using maximal cliques in link streams. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 1517–1522).

    Google Scholar 

  • Viard, J., Latapy, M., & Magnien, C. (2018). Enumerating maximal cliques in link streams with durations. Information Processing Letters, 133, 44–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Vila, J. J. R., Kozievitch, N. P., Gadda, T. M. C., Fonseca, K. V. O., Rosa, M. O., Gomes-Jr, L. C., & Akbar, M. (2016). Urban mobility challenges–An exploratory analysis of public transportation data in Curitiba. Revista de Informática Aplicada, 12(1).

    Google Scholar 

  • Voorhees, A. M. (2013). A general theory of traffic movement. Transportation, 40(6), 11051116.

    Article  Google Scholar 

  • Wang, W., Attanucci, J., & Wilson, N. (2011). Bus passenger origin-destination estimation and related analyses using automated data collection systems. Journal of Public Transportation, 14(4), 131–150.

    Article  Google Scholar 

  • Xiong, G., Dong, X., Fan, D., & Zhu, F. (2012). Parallel bus rapid transit (BRT) operation management system based on ACP approach. In Proceedings of the 9th IEEE International Conference on Networking, Sensing and Control (ICNSC’12) (pp. 22–27).

    Chapter  Google Scholar 

  • Xu, X., Hu, J., Liu, F., & Liu, L. (2007). Scaling and correlations in three bus-transport networks of China. Physica A, 374(1), 441–448.

    Article  Google Scholar 

  • Yang, H. A. I., Sasaki, T., & Iida, Y. (1992). Estimation of origin–destination matrices from link traffic counts on congested networks. Transportation Research Part B, 26, 417.

    Article  Google Scholar 

  • Ye, P., & Wen, D. (2017). Optimal traffic sensor location for origin –Destination estimation using a compressed sensing framework. Journal of Advanced Transportation, 18(7), 1857–1866.

    Google Scholar 

  • Yu, H., Chen, D., Wu, Z., Ma, X., & Wang, Y. (2016). Headway-based bus bunching prediction using transit smart card data. Transportation Research Part C, 72, 45–59.

    Article  Google Scholar 

  • Yun, I., Aerde, V., & Aerde, V. (2005). Estimation of dynamic origin destination matrix: A genetic algorithm approach. In IEEE Conference on Intelligent Transportation Systems (pp. 390–395).

    Google Scholar 

  • Zhang, J., & Wang, M. (2019). Transportation functionality vulnerability of urban rail transit networks based on moving block: The case of Nanjing metro. Physica A: Statistical Mechanics and its Applications, 535, 122367.

    Article  Google Scholar 

  • Zhang, H., Zhao, P., Gao, J., & Yao, X. M. (2013). The analysis of the properties of bus network topology in Beijing basing on complex networks. Mathematical Problems in Engineering, 2013, 694956.

    Google Scholar 

  • Zhu, Y. (2010). Study on intelligent traffic control based BRT. In Proceedings of the 2nd International Workshop on Intelligent Systems and Applications (ISA) (pp. 1–4).

    Google Scholar 

Download references

Acknowledgments

The authors thank Curitiba City Hall, URBS, IPPUC, Setransp for providing access to data and technical support, as well as Semida Silveira, coordinator of the project Smart city concepts in Curitiba – Innovation for sustainable mobility and energy efficiency funded by Vinnova in Sweden. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior-Brasil (CAPES) – (013/2012-DINTER UTFPR/IFSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo O. Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosa, M.O. et al. (2021). Advances on Urban Mobility Using Innovative Data-Driven Models. In: Augusto, J.C. (eds) Handbook of Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-69698-6_57

Download citation

Publish with us

Policies and ethics