Skip to main content

Latent Fingermark Aging in 3D: Uncovering Hidden Degradation Patterns

  • Chapter
  • First Online:
Technologies for Fingermark Age Estimations: A Step Forward

Abstract

Usually, in fingermark aging studies, two-dimensional (2D) morphometric features are examined in order to obtain information on how, and by how much, fingermarks visually degrade over time. These include parameters such as the distance between ridges, color contrast between ridges and furrows, and the width of ridges. However, in this process, there are other aging features that are being overlooked because fingermarks are rather three-dimensional (3D) objects. These features are the height and area occupied by the ridges, as well as the volume of the fingermark secretion. This chapter discusses novel 3D features with the objective to aid in establishing a multi-parameter methodology for determining time since deposition by visual means. Fingermark age estimation is an expanding subfield of forensic science research that will undoubtedly provide meaningful insights on the aging process of this common physical evidence. In addition, optical profilometry, a nondestructive 3D imaging technology, is discussed in detail to explain how it can be employed to reveal 3D features not explored before in the field of friction ridge pattern analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Microscopic distinguishable and discriminating features located along the ridges of friction ridge skin, from human fingers, toes, palm of the hands, and sole of the feet.

  2. 2.

    Semiporous surfaces such as finished wood and glossy cardboard must be treated with a combination of techniques for fingermark development which adds a layer of complexity to aging studies. Little is yet known on aging patterns on this type of surfaces.

  3. 3.

    Refers to the phenomenon where, under certain environmental conditions, a single ridge can randomly “move” from its original position over time while the adjacent ridges may remain unaltered. As a result, a minutia at a specific location may change in appearance.

  4. 4.

    A detailed NIST report “Latent Print Examination and Human Factors: Improving the Practice through a Systems Approach” was published in 2012 https://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7842.pdf

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ALS:

Alternate light source

AFIS:

Automated fingerprint identification system

CWL:

Chromatic white light

MALDI:

Matrix-assisted laser desorption/ionization

ToF-SIMS:

Time-of-flight secondary ion mass spectrometry

OP:

Optical profilometer

ULW:

Universal Latent Workstation

SED:

Silver electroless deposition

TiO2:

Titanium dioxide

FTIR:

Fourier transform infrared spectroscopy

GC-MS:

Gas chromatography/mass spectrometry

CM:

Confocal microscopy

References

  1. De Paoli G, Lewis SA, Schuette EL, Lewis LA, Connatser RM, Farkas T (2010) Photo- and thermal-degradation studies of select eccrine fingerprint constituents. J Forensic Sci 55(4):962–969. https://doi.org/10.1111/j.1556-4029.2010.01420.x

    Article  PubMed  Google Scholar 

  2. Gutierrez-Redomero E, Rivalderia N, Alonso-Rodriguez C, Martin LM, Dipierri JE, Fernandez-Peire MA, Morillo R (2012) Are there population differences in minutiae frequencies? A comparative study of two Argentinian population samples and one Spanish sample. Forensic Sci Int 222(1–3):266–276. https://doi.org/10.1016/j.forsciint.2012.07.003

    Article  PubMed  Google Scholar 

  3. Puertas M, Ramos D, Fierrez J, Ortega-Garcia J, Exposito N (2010) Towards a better understanding of the performance of latent fingerprint recognition in realistic forensic conditions. In: Proceedings of the twentieth international conference on pattern recognition, IEEE, pp 1638–1641. https://doi.org/10.1109/ICPR.2010.405

  4. Gutierrez-Redomero E, Alonso-Rodriguez C, Hernandez-Hurtado LE, Rodriguez-Villalba JL (2011) Distribution of the minutiae in the fingerprints of a sample of the Spanish population. Forensic Sci Int 208(1–3):79–90. https://doi.org/10.1016/j.forsciint.2010.11.006

    Article  PubMed  Google Scholar 

  5. van Dam A, van Beek FT, Aalders MCG, van Leeuwen TG, Lambrechts SAG (2016) Techniques that acquire donor profiling information from fingermarks – a review. Sci Justice 56(2):143–154. https://doi.org/10.1016/j.scijus.2015.12.002

  6. De Alcaraz-Fossoul J, Roberts KA, Barrot-Feixat C, Hogrebe G, Gene Badia M (2016) Fingermark ridge drift. Forensic Sci Int 258:26–31. https://doi.org/10.1016/j.forsciint.2015.11.003

    Article  PubMed  Google Scholar 

  7. De Alcaraz-Fossoul J, Barrot-Feixat C, Zapico SC, Mancenido M, Broatch J, Roberts KA et al (2017) Ridge width correlations between inked prints and powdered latent fingerprints. J Forensic Sci 63(4):1085–1091. https://doi.org/10.1111/1556-4029.13656

    Article  CAS  PubMed  Google Scholar 

  8. De Alcaraz-Fossoul J, Mancenido M, Soignard E, Silverman N (2018) Application of 3D imaging technology to latent fingermark aging studies. J Forensic Sci 64(2):570–576. https://doi.org/10.1111/1556-4029.13891

    Article  PubMed  Google Scholar 

  9. Cole SA, Scheck B (2018) Fingerprints and miscarriages of justice: ‘other’ types of error and a post-conviction right to database searching. Albany Law Rev 81(3):807–850

    Google Scholar 

  10. Merkel R, Gruhn S, Dittmann J, Vielhauer C, Brautigam A (2012) On non-invasive 2D and 3D chromatic white light image sensors for age determination of latent fingerprints. Forensic Sci Int 222(1–3):52–70. https://doi.org/10.1016/j.forsciint.2012.05.001

    Article  PubMed  Google Scholar 

  11. Merkel R, Otte K, Clausing R, Dittmann J, Vielhauer C, Brautigam A (2013) First investigation of latent fingerprints long-term aging using chromatic white light sensors. In: Proceedings of the 1st ACM workshop on information hiding and multimedia security (IH&MMSec), pp 95–104. https://doi.org/10.1145/2482513.2482519

  12. Bailey MJ, Bright NJ, Croxton RS, Francese S, Ferguson LS et al (2012) Chemical characterizations of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry, X-ray photoelectron spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopic imaging: an intercomparison. Anal Chem 84(20):8514–8523. https://doi.org/10.1021/ac302441y

    Article  CAS  PubMed  Google Scholar 

  13. Bailey MJ, Ismail M, Bleay S, Bright N, Levin Elad M et al (2013) Enhanced imaging of developed fingerprints using mass spectrometry imaging. Analyst 138(21):6246–6250. https://doi.org/10.1039/c3an01204b

    Article  CAS  PubMed  Google Scholar 

  14. Sapstead RM, Corden N, Hillman AR (2015) Latent fingerprint enhancement via conducting electrochromic copolymer films of pyrrole and 3,4-ethylenedioxythiophene on stainless steel. Electrochimica Acta 162:119–128. https://doi.org/10.1016/j.electacta.2014.11.061

    Article  CAS  Google Scholar 

  15. Dorakumbura BN, Becker T, Lewis SW (2016) Nanochemical mapping of latent fingermarks: a preliminary investigation into the changes in surface interactions and topography over time. Forensic Sci Int 267:16–24. https://doi.org/10.1016/j.forsciint.2016.07.024

    Article  PubMed  Google Scholar 

  16. O Hagan A, Green S (2018) Crime scene to court: a study on finger-mark aging. Forensic Res Criminol Int J 6(6):491–503. https://doi.org/10.15406/frcij.2018.06.00249

    Article  Google Scholar 

  17. National Institute of Justice (U.S.) (2018) The fingerprint sourcebook. Department of Justice, Office of Justice Programs, National Institute of Justice

    Google Scholar 

  18. Hicklin RA, Buscaglia J, Roberts MA (2013) Assessing the clarity of friction ridge impression. Forensic Sci Int 226(1–3):106–117. https://doi.org/10.1016/j.forsciint.2012.12.015

    Article  PubMed  Google Scholar 

  19. Scientific Working Group on Friction Ridge Analysis, Study, and Technology (2011) Standards for examining friction ridge impressions and resulting conclusions, ver 1.0

    Google Scholar 

  20. Home Office Scientific Development Branch (2006) Fingerprint Development and Imaging Newsletter: Special Edition

    Google Scholar 

  21. Pulsifer DP, Muhlberger SA, Williams SF, Shaler RC (2013) An objective fingerprint quality-grading system. Forensic Sci Int 231(1–3):204–207. https://doi.org/10.1016/j.forsciint.2013.05.003

    Article  PubMed  Google Scholar 

  22. Ulery BT, Hicklin RA, Roberts MA, Buscaglia J (2014) Measuring what latent fingerprint examiners consider sufficient information for individualization determinations. PLoS One 9(11):e110179. https://doi.org/10.1371/journal.pone.0110179.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reed H, Stanton A, Wheat J, Kelley J, David L, Rao W, Smith A, Owen D, Francese S (2016) The Reed-Stanton press rig for the general of reproducible fingermarks: towards a standardised methodology for fingermark research. Sci Justice 56(1):9–17. https://doi.org/10.1016/j.scijus.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  24. Thomas GL, Reynoldson TE (1975) Some observations on fingerprint deposits. J Phys D Appl Phys 8(6):724–729. https://doi.org/10.1088/0022-3727/8/6/017

    Article  Google Scholar 

  25. Fieldhouse SJ (2015) An investigation into the effects of force applied during deposition on latent fingermarks and inked fingerprints using a variable force fingerprint sampler. J Forensic Sci 60(2):422–427. https://doi.org/10.1111/1556-4029.12661

    Article  PubMed  Google Scholar 

  26. Richmond S (1997) Do fingerprint ridges and characteristics within ridges change with pressure? Australian Federal Police, Forensic Services. 2004. In: Roddy A, Stosz J (eds) Fingerprint features – statistical analysis and system performance estimates. Proceedings of the IEEE 1997, vol 85, no 9, pp 1390–1421

    Google Scholar 

  27. Serina ER, Mockensturm E, Mote CD Jr, Rempe DA (1998) Structural model of the forced compression of the fingertip pulp. J Biomech 31(7):639–646. https://doi.org/10.1016/s0021-9290(98)00067-0

    Article  CAS  PubMed  Google Scholar 

  28. Maceo AV (2009) Qualitative assessment of skin deformation: a pilot study. J Forensic Ident 59(4):390–440

    Google Scholar 

  29. Sheets HD, Torres A, Langenburg G, Bush PJ, Bush MA (2014) Distortion in fingerprints: a statistical investigation using shape measurement tools. J Forensic Sci 59(4):1113–1120. https://doi.org/10.1111/1556-4029.12503

    Article  PubMed  Google Scholar 

  30. Chadwick S, Moret S, Jayashanka N, Lennard C, Spindler X, Roux C (2018) Investigation of some of the factors influencing fingermark detection. Forensic Sci Int 289:381–389. https://doi.org/10.1016/j.forsciint.2018.06.014

    Article  CAS  PubMed  Google Scholar 

  31. De Alcaraz-Fossoul J, Barrot-Feixat C, Tasker J, McGarr L, Stow K, Carreras-Marin C, Turbany Oset J, Gene Badia M (2016) Latent fingermark aging patterns (part II): color contrast between ridges and furrows as one Indicator of degradation. J Forensic Sci 61(4):947–958. https://doi.org/10.1111/1556-4029.13099

    Article  CAS  PubMed  Google Scholar 

  32. De Alcaraz-Fossoul J, Barrot-Feixat C, Zapico SC, McGarr L, Carreras-Marin C, Tasker J, Gene Badia M (2019) Latent fingermark aging patterns (part IV): ridge width as one indicator of degradation. J Forensic Sci 64:1–10. https://doi.org/10.1111/1556-4029.14018

    Article  CAS  Google Scholar 

  33. De Alcaraz-Fossoul J, Barrot Feixat C, Carreras-Marin C, Tasker J, Zapico S, Gene Badia M (2017) Latent fingermark aging patterns (part III): discontinuity index as one indicator of degradation. J Forensic Sci 64:1–9. https://doi.org/10.1111/1556-4029.13438

    Article  CAS  Google Scholar 

  34. De Alcaraz-Fossoul J, Mestres Patris C, Barrot Feixat C, McGarr L, Brandelli D, Stow K, Gene Badia M (2016) Latent fingermark aging patterns (part I): minutiae count as one indicator of degradation. J Forensic Sci 61(2):322–333. https://doi.org/10.1111/1556-4029.13007

    Article  CAS  PubMed  Google Scholar 

  35. Dror I, Rosenthal R (2008) Meta-analytically quantifying the reliability and biasability of forensic experts. J Forensic Sci 53(4):900–903. https://doi.org/10.1111/j.1556-4029.2008.00762.x

    Article  PubMed  Google Scholar 

  36. Dror I, Hampikian G (2011) Subjectivity and bias in forensic DNA mixture interpretation. Sci Justice 51(4):204–208. https://doi.org/10.1016/j.scijus.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  37. Bordas L, Bonsutto J (2020) Adermatoglyphia: the loss or lack of fingerprints and its causes. J Forensic Ident 70(2):154–162

    Google Scholar 

  38. Kahn HS, Ravindranath R, Valdez R, Venkat Narayan KM (2001) Fingerprint ridge – count difference between adjacent fingertips (dR45) predicts upper-body tissue distribution: evidence for early gestational programming. Am J Epidemiol 153(4):338–344. https://doi.org/10.1093/aje/153.4.338

  39. Bradshaw R, Wolstenholme R, Ferguson LS, Sammon C, Mader K et al (2013) Spectroscopic imaging based approach for condom identification in condom contaminated fingermarks. Analyst 138:2546–2557. https://doi.org/10.1039/c3an00195d

    Article  CAS  PubMed  Google Scholar 

  40. Jasuja OP, Toofany MA, Singh G, Sodhi GS (2009) Dynamics of latent fingerprints: the effect of physical factors on quality of ninhydrin developed prints – a preliminary study. Sci Justice 49(1):8–11. https://doi.org/10.1016/j.scijus.2008.08.001

  41. Arora SS, Liu E, Cao K, Jain AK (2014) Latent fingerprint matching: performance gain via feedback from exemplar prints. IEEE Trans Pattern Anal Machine Intel 36(12):2452–2465. https://doi.org/10.1109/TPAMI.2014.2330609

    Article  Google Scholar 

  42. Meyers A (2017) The assessment of fingerprint quality for a more effective match score in minutiae-based matching performers. West Virginia University: The Research Repository – Graduate theses, dissertations, and problem reports. https://doi.org/10.33915/etd.6226

  43. De Alcaraz-Fossoul J, Mestres Patris C, Balaciart Muntaner A, Barrot Feixat A, Gene Badia M (2013) Determination of latent fingerprint degradation patterns – a real fieldwork study. Int J Legal Med 127(4):857–870. https://doi.org/10.1007/s00414-012-0797-0

  44. Czech A, Szabelak A, Sowinski A (2019) Changes in fingerprints depending on physiological factors. J Forensic Sci 64(3):711–716. https://doi.org/10.1111/1556-4029.13937

    Article  PubMed  Google Scholar 

  45. Ahmed AA, Osman S (2016) Topological variability and sex difference in fingerprint ridge density in a sample of the Sudanese population. J Forensic Legal Med 42:25–32. https://doi.org/10.1016/j.jflm.2016.05.005

    Article  Google Scholar 

  46. Fournier NA, Ross AH (2016) Sex, ancestral, and pattern type variation of fingerprint minutiae: a forensic perspective on anthropological dermatoglyphics. Am J Phys Anthropol 160(4):625–632. https://doi.org/10.1002/ajpa.22869

    Article  PubMed  Google Scholar 

  47. Girod A, Ramotowski A, Lambrechts A, Misrielal P, Aalders M, Weyermann C (2016) Fingermark age determinations: legal considerations, review of the literature, and practical propositions. Forensic Sci Int 262:212–226. https://doi.org/10.1016/j.forsciint.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  48. Czech A, Gryszczyk N, Szabelak A, Sowinski A (2020) Changes in fingerprints and the quantity of material forming the print depending on hand cleanliness, gender, and ambient conditions. J Forensic Sci 65(1):84–89. https://doi.org/10.1111/1556-4029.14164

    Article  PubMed  Google Scholar 

  49. Fainman Y, Lenz E, Shamir J (1982) Optical profilometer: a new method for high sensitivity and wide dynamic range. Appl Opt 21(17):3200–3208. https://doi.org/10.1364/AO.21.003200

    Article  CAS  PubMed  Google Scholar 

  50. Kent T (2016) Water content of latent fingerprints – dispelling the myth. Forensic Sci Int 266:134–138. https://doi.org/10.1016/j.forsciint.2016.05.016

  51. Bumbrah GS, Sharma RM, Jasuja OM (2016) Emerging latent fingerprint technologies: a review. Res Rep Forensic Med Sci 6:39–50. https://doi.org/10.2147/RRFMS.S94192

    Article  Google Scholar 

  52. Ametek Ultra Precision Technologies (2018) Zygo Mx surface texture parameters manual, pp 1–28

    Google Scholar 

  53. Kuwayama K, Tsujkawa K, Miyaguchi H, Kanamore T, Togawa Iwata Y, Inoue H (2013) Time-course measurements of caffeine and its metabolites extracted from fingertips after coffee intake: a preliminary study for the detection of drugs from fingerprints. Anal Bioanal Chem 405(12):3945–3952. https://doi.org/10.1007/s00216-012-6569-3

    Article  CAS  PubMed  Google Scholar 

  54. Lambrechts SA, van Dam A, de Vos J, van Weert A, Sijen T, Aalders MC (2012) On the autofluorescence of fingermarks. Forensic Sci Int 222(1–3):89–93. https://doi.org/10.1016/j.forsciint.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  55. Barnett PD, Berger RA (1976) The effects of temperature and humidity on the permanency of latent fingerprints. J Forensic Sci Soc 16(3):249–254. https://doi.org/10.1016/s0015-7368(76)71068-5

    Article  CAS  PubMed  Google Scholar 

  56. Akiba N, Kuroki K, Kurosawa K, Tsuchiya K (2018) Visualization of aged fingerprints with an ultraviolet laser. J Forensic Sci 63(2):556–562. https://doi.org/10.1111/1556-4029.13588

    Article  CAS  PubMed  Google Scholar 

  57. Payne IC, McCarthy I, Almond M, Baum J, Bond J (2014) The effect of light exposure on the degradation of latent fingerprints on brass surfaces: the use of silver electroless deposition as a visualization technique. J Forensic Sci 59(5):1368–1371. https://doi.org/10.1111/1556-4029.12524

    Article  CAS  PubMed  Google Scholar 

  58. Fischer R, Vielhauer C (2012) Forensic ballistic analysis using a 3D sensor device. The 14th ACM Workshop on Multimedia and Security, pp 67–76. https://doi.org/10.1145/2361407.2361418

  59. Bolton-King RS, Evans O, Smith CL, Painter JD, Allsop DF, Cranton WM (2010) What are the prospects of 3D profiling systems applied to firearms and toolmark identification? AFTE J 42(1):23–33

    Google Scholar 

  60. Bachrach B (2002) Development of a 3D-based automated firearms evidence comparison system. J Forensic Sci 47(6):1253–1264. https://doi.org/10.1520/JFS15557J

    Article  PubMed  Google Scholar 

  61. Senin N, Groppetti R, Garfano L, Fratini P, Pierni M (2006) Three-dimensional surface topography acquisition and analysis for firearm identification. J Forensic Sci 51(2):282–295. https://doi.org/10.1111/j.1556-4029.2006.00048.x

    Article  PubMed  Google Scholar 

  62. Dektak stylus profiler (2020) Brutak website. https://www.bruker.com/products/surface-and-dimensional-analysis/stylus-profilometers.html

  63. Petraco NDK, Chan H, De Forest PH, Diaczuk P, Gambino C et al (2012) Application of machine learning to toolmarks: statistically based methods for impression pattern comparisons. NCJ Report 239048. pp 1–101

    Google Scholar 

  64. Optical profiler basics (2020) Zygo Corporation website. https://www.zygo.com/?/met/profilers/opticalprofilersabout.htm

  65. Kosir AB, Divieto C, Pavsic J, Pavarelli S, Dobnik D, Dreo T, Bellotti R, Sassi MP, Zel J (2017) Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR. Anal Bioanal Chem 409(28):6689–6697. https://doi.org/10.1007/s00216-017-0625-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cadd S, Islam M, Manson P, Bleay S (2015) Fingerprint composition and aging: a literature review. Sci Justice 55(4):219–238. https://doi.org/10.1016/j.scijus.2015.02.004

    Article  PubMed  Google Scholar 

  67. Muramoto S, Sisco E (2015) Strategies for potential age dating of fingerprints through the diffusion of sebum molecules on a nonporous surface analyzed using time-of-flight secondary ion mass spectrometry. Anal Chem 87(16):8035–8038. https://doi.org/10.1021/acs.analchem.5b02018

    Article  CAS  PubMed  Google Scholar 

  68. O’Neill KC, Jin Lee Y (2018) Effect of aging and surface interactions on the diffusion of endogenous compounds in latent fingerprints studied by mass spectrometry imaging. J Forensic Sci 63(3):708–713. https://doi.org/10.1111/1556-4029.13591

    Article  CAS  PubMed  Google Scholar 

  69. Exline DL, Wallace C, Roux C, Lennard C, Nelson MP, Treado PJ (2003) Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence. J Forensic Sci 48(5):1047–1053. https://doi.org/10.1520/JFS2002333

    Article  CAS  PubMed  Google Scholar 

  70. Andersson PO, Lejon C, Mikaelsson T, Landstrom L (2017) Towards fingermark dating: a Raman spectroscopy proof-of-concept study. ChemistryOpen 6(6):706–709. https://doi.org/10.1002/open.201700129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dorakumbura BN, Busetti F, Lewis SW (2020) Analysis of squalene and its transformation by-products in latent fingermarks by ultrahigh-performance liquid chromatography-high resolution accurate mass Orbitrap mass spectrometry. Forensic Chem 17(100193). https://doi.org/10.1016/j.forc.2019.100193

  72. Daluz HM (2014) Fundamentals of fingerprint analysis, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  73. Pinto M, Langer TM, Huffer T, Hofmann T, Herndl GJ (2019) The composition of bacterial communities associated with plastic biofilm differs between different polymers and stages of biofilm succession. PLoS One 14(6):e0217165. https://doi.org/10.1371/journal.pone.0217165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oorschot RAH, Szkuta B, Meakin GE, Kokshoorn B, Goray M (2019) DNA transfer in forensic science: a review. Forensic Sci Int Genet 38:140–166. https://doi.org/10.1016/j.fsigen.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  75. Kanokwongnuwut P, Kirkbride KP, Linacre A (2018) Detection of latent DNA. Forensic Sci Int Genet 37:95–101. https://doi.org/10.1016/j.fsigen.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  76. Archer N, Charles Y, Elliott J, Jickells S (2005) Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface. Forensic Sci Int 154(2–3):224–239. https://doi.org/10.1016/j.forsciint.2004.09.120

    Article  CAS  PubMed  Google Scholar 

  77. Croxton R, Baron M, Butler S, Kent T, Sears V (2010) Variation in amino acid and lipid composition in latent fingerprints. Forensic Sci Int 199(1–3):93–102. https://doi.org/10.1016/j.forsciint.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  78. Mountfort KA, Bronstein H, Archer N, Jickells SA (2007) Identification of oxidation products of squalene in solution and in latent fingerprints by ESI-MS and LC/APCI-MS. Anal Chem 79(7):2650–2657. https://doi.org/10.1021/ac0623944

    Article  CAS  PubMed  Google Scholar 

  79. Raymond JJ, Oorschot RAH, Walsh SJ, Gunn PR (2009) Trace DNA and street robbery: a criminalistic approach to DNA evidence. Forensic Sci Int Genet Supp Ser 2(1):544–546. https://doi.org/10.1016/j.fsigss.2009.08.073

    Article  Google Scholar 

  80. Matuszewski S (2015) Age-dependent changes of contrast in fingermarks of various lipid content. Prob Forensic Sci 101:5–13

    Google Scholar 

  81. Romano CG, Mangiaracina R, Donata L, D’Angelo R, Scimone C, Sidota A (2019) Aged fingerprints for DNA profile: first report of successful typing. Forensic Sci Int 302. https://doi.org/10.1016/j.forsciint.2019.109905

  82. Matei A (2019) Chapter 4: end user commentary on novel technological applications for latent and blood-stained fingermark aging studies. In: Francese S (ed) Emerging technologies for the analysis of forensic traces. Springer, Cham, pp 67–74

    Chapter  Google Scholar 

  83. Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M (2018) Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 8(16425):1–11. https://doi.org/10.1038/s41598-018-34791-z

    Article  CAS  Google Scholar 

  84. Christensen AM, Crowder CM, Ousley SD, Houck MM (2014) Error and its meaning in forensic science. J Forensic Sci 59(1):123–126. https://doi.org/10.1111/1556-4029.12275

    Article  PubMed  Google Scholar 

  85. Dror IE, Thompson WC, Meissner CA, Kornfield I, Krane D, Saks M, Risinger M (2015) Context management toolbox: a linear sequential unmasking (LSU) approach for minimizing cognitive bias in forensic decision making. J Forensic Sci 60(4):1111–1112. https://doi.org/10.1111/1556-4029.12805

    Article  PubMed  Google Scholar 

  86. De Alcaraz-Fossoul J, Barrot-Feixat C, Roberts KA (2015) The paradigm of fingerprint age determination. J Forensic Sci 1(1):006

    Google Scholar 

  87. Cole SA (2007) More than zero: accounting for error in latent fingerprint identification. J Crim Law Crim 95(3)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep De Alcaraz-Fossoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Alcaraz-Fossoul, J., Narowski, M.A. (2021). Latent Fingermark Aging in 3D: Uncovering Hidden Degradation Patterns. In: De Alcaraz-Fossoul, J. (eds) Technologies for Fingermark Age Estimations: A Step Forward. Springer, Cham. https://doi.org/10.1007/978-3-030-69337-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69337-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69336-7

  • Online ISBN: 978-3-030-69337-4

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics