Skip to main content

Synthesis of Silver Nanoparticles with Environmental Applications

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology

Abstract

Nowadays, hybrid silver nanoparticles showed high surface active properties, cost-effective synthesis, and rapidly fabricated nanocomposites. The enormous novel behavior of silver nanoparticles widens its application area in various fields. This chapter summarizes the synthesis of silver nanoparticles, the different spectroscopic tools required, the role of doping, and the applications of silver nanoparticles. Here, we discuss different techniques for the removal of pollutants via photocatalysis, adsorption, oxidation, reaction mechanism, and reduction process with silver nanomaterials and also focus on the importance of green synthesized nanoparticles. The morphological distribution of silver nanoparticles affects its electromagnetic, catalytic, and optical properties by changing the stabilizers and artificial methods and reducing pollutants. This includes the methods of fabrication of silver nanomaterials with their applications and doped and modified nanocomposites with the upsurge of their surface activity. This research gap is also discussed in the form of future scope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal H, Menon S, Kumar SV, Rajeshkumar S (2018) Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 286:60–70

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  Google Scholar 

  • Ahn E-Y, Jin H, Park Y (2019) Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 101:204–216

    Article  CAS  Google Scholar 

  • Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B: Biointerfaces 171:398–405

    Article  CAS  Google Scholar 

  • Aritonang HF, Koleangan H, Wuntu AD (2019) Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol 8642303

    Google Scholar 

  • Arunachalam R, Dhanasingh S, Kalimuthu B, Uthirappan M, Rose C, Mandal AB (2012) Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf B: Biointerfaces 94:226–230

    Article  CAS  Google Scholar 

  • Arya G, Sharma N, Ahmed J, Gupta N, Kumar A, Chandra R, Nimesh S (2017) Degradation of anthropogenic pollutant and organic dyes by biosynthesized silver nano-catalyst from Cicer arietinum leaves. J Photochem Photobiol B Biol 174:90–96

    Article  CAS  Google Scholar 

  • Awad MA, Hendi AA, Ortashi KM, Alzahrani B, Soliman D, Alanazi A, Alenazi W, Taha RM, Ramadan R, El-Tohamy M (2021) Biogenic synthesis of silver nanoparticles using Trigonella foenum-graecum seed extract: characterization, photocatalytic and antibacterial activities. Sensors Actuators A Phys 323:112670

    Article  CAS  Google Scholar 

  • Balogh L, Tomalia DA (1998) Poly (amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J Am Chem Soc 120(29):7355–7356

    Google Scholar 

  • Bar H, Kr D, Bhui, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Colloids Surf A: Physicochem Eng Asp 348:212–216

    Article  CAS  Google Scholar 

  • Barros CH, Fulaz S, Stanisic D, Tasic L (2018) Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics 7:69

    Article  CAS  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B: Biointerfaces 71:113–118

    Article  CAS  Google Scholar 

  • Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154

    Article  CAS  Google Scholar 

  • Beyene HD, Ambaye TG (2019) Application of sustainable nanocomposites for water purification process. Sustainable polymer composites and nanocomposites. Springer, pp. 387–412

    Google Scholar 

  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409

    Google Scholar 

  • Botcha S, Prattipati SD (2020) Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 Cells. BioNanoScience 10:11–22

    Article  Google Scholar 

  • Chakravarty A, Ahmad I, Singh P, Sheikh MUD, Aalam G, Sagadevan S, Ikram S (2022) Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity. Chem Phys Lett 795:139493

    Article  CAS  Google Scholar 

  • Chen X, Jensen L (2016) Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles. J Optic 18(7):074009

    Google Scholar 

  • Chen P, Song L, Liu Y, Fang Y-E (2007) Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Rad Phy Chem 76(7):1165–1168

    Article  CAS  Google Scholar 

  • Cunningham S, Joshi L (2015) Assessment of exposure of marine and freshwater model organisms to metallic nanoparticles. Environmental Protection Agency, Johnstown Castle

    Google Scholar 

  • da Silva BL, Abuçafy MP, Manaia EB, Junior JAO, Chiari-Andréo BG, Pietro RCR, Chiavacci LA (2019) Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int J Nanomed 14:9395

    Google Scholar 

  • de Aragao AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araujo MC, Santiago JdAS, Cardoso VS, Quaresma P, de Almeida JRdS, da Silva DA (2019) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem 12:4182–4188

    Article  Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071

    Article  CAS  Google Scholar 

  • Durán N, Nakazato G, Seabra AB (2016) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100:6555–6570

    Article  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A 369(1-3):27–33

    Google Scholar 

  • Edison TNJI, Atchudan R, Karthik N, Balaji J, Xiong D, Lee YR (2020) Catalytic degradation of organic dyes using green synthesized N-doped carbon supported silver nanoparticles. Fuel 280:118682

    Article  CAS  Google Scholar 

  • Esumi K, Suzuki A, Yamahira A, Torigoe K (2000) Role of poly (amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver. Langmuir 16(6):2604–2608

    Google Scholar 

  • Ghoreishi SM, Behpour M, Khayatkashani M (2011) Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E 44:97–104

    Article  CAS  Google Scholar 

  • Gomez S, Toffanin R, Bernstorff S, Romanello M, Amenitsch H, Rappolt M, Rizzo R, Vittur F (2000) Collagen fibrils are differently organized in weight-bearing and not-weight-bearing regions of pig articular cartilage. J Exp Zoology 287(5):346–352

    Article  CAS  Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3:394

    CAS  Google Scholar 

  • Guo H, Tao S (2007) Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sensors Actuators B Chem 123:578–582

    Article  CAS  Google Scholar 

  • Gupta N, Singh HP, Sharma RK (2010) Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf A Physicochem Eng Asp 367:102–107

    Article  CAS  Google Scholar 

  • Hamedi S, Shojaosadati SA (2019) Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: evaluation of their biological and catalytic activities. Polyhedron 171:172–180

    Article  CAS  Google Scholar 

  • He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, Huang Z, Li J, Zeng C, Zhang Q (2017) Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv 7(63):39842–39851

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int 639725

    Google Scholar 

  • Jeyaraj M, Rajesh M, Arun R, MubarakAli D, Sathishkumar G, Sivanandhan G, Dev GK, Manickavasagam M, Premkumar K, Thajuddin N (2013) An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B: Biointerfaces 102:708–717

    Article  CAS  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905

    Article  CAS  Google Scholar 

  • Kambale EK, Nkanga CI, Mutonkole B-PI, Bapolisi AM, Tassa DO, Liesse J-MI, Krause RW, Memvanga PB (2020) Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon 6:e04493

    Article  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B (2012) Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract. Mater Lett 67:64–66

    Article  CAS  Google Scholar 

  • Khan SB, Faisal M, Rahman MM, Jamal A (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environ 409(15):2987–2992

    Article  CAS  Google Scholar 

  • Khan Z, Hussain JI, Hashmi AA (2012) Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using Neem (Azadirachta indica) leaf extract. Colloids Surf B: Biointerfaces 95:229–234

    Article  CAS  Google Scholar 

  • Kim S-W, Kim K-S, Lamsal K, Kim Y-J, Kim S-B, Jung M-Y, Sim S-J, Kim H-S, Chang S-J, Kim J-K (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    Google Scholar 

  • Kora AJ, Sashidhar R, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan P (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  Google Scholar 

  • Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 90:173–176

    Article  CAS  Google Scholar 

  • Lanzano T, Bertram M, De Palo M, Wagner C, Zyla K, Graedel T (2006) The contemporary European silver cycle. Resour Conserv Recycl 46(1):27–43

    Article  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • Luoma SN (2008) Silver nanotechnologies and the environment. The project on emerging nanotechnologies report 15:12–13

    Google Scholar 

  • Lv Y, Jin S, Wang Y, Lun Z, Xia C (2016) Recent advances in the application of nanomaterials in enzymatic glucose sensors. J Iran Chem Soc 13:1767–1776

    Article  CAS  Google Scholar 

  • Lyons BE, Britt RH, Strohbehn JW (1984) Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array. IEEE Transactions on Biomedical Engineering (1):53–62

    Google Scholar 

  • Majeed M, Hakeem KR, Rehman RU (2022) Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications-present insights and bottlenecks. Chemosphere 288:132527

    Google Scholar 

  • Meashi D, Sharma P, Sharma AK (2020) Bio-functionalized gold nanoparticles: a potent probe for profound antibacterial efficiency through drug delivery system. Asian J Biol Life Sci 9:139

    Article  Google Scholar 

  • Mohamed N, Madian NG (2020) Evaluation of the mechanical, physical and antimicrobial properties of chitosan thin films doped with greenly synthesized silver nanoparticles. Mater Today Commun 25:101372

    Article  CAS  Google Scholar 

  • Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, Begum NA (2011) Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf B: Biointerfaces 82:497–504

    Article  CAS  Google Scholar 

  • Moodley JS, Krishna SBN, Pillay K, Govender P (2018) Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv Nat Sci Nanosci Nanotechnol 9(1):015011

    Article  Google Scholar 

  • Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicology in vitro 20(2):187–210

    Google Scholar 

  • Mousavi-Khattat M, Keyhanfar M, Razmjou A (2018) A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cells, Nanomed Biotechnol 46:S1022–S1031

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Nagarajan D, Venkatanarasimhan S (2019) Copper (II) oxide nanoparticles coated cellulose sponge—an effective heterogeneous catalyst for the reduction of toxic organic dyes. Environ Sci Pollut Res 26(22):22958–22970

    Google Scholar 

  • Noah N (2019) Green synthesis: Characterization and application of silver and gold nanoparticles, Green synthesis, characterization and applications of nanoparticles. Elsevier, pp. 111–135

    Google Scholar 

  • Ojemaye MO, Okoh SO, Okoh AI (2021) Silver nanoparticles (AgNPs) facilitated by plant parts of Crataegus ambigua Becker AK extracts and their antibacterial, antioxidant and antimalarial activities. Green Chem Lett Rev 14:51–61

    Article  CAS  Google Scholar 

  • Otari S, Patil R, Nadaf N, Ghosh S, Pawar S (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94

    Article  CAS  Google Scholar 

  • Oves M, Rauf MA, Aslam M, Qari HA, Sonbol H, Ahmad I, Zaman GS, Saeed M (2022) Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci 29:460–471

    Article  CAS  Google Scholar 

  • Pan Z, Ueda A, Aga R Jr, Burger A, Mu R, Morgan S (2010) Spectroscopic studies of Er3+ doped Ge-Ga-S glass containing silver nanoparticles. J Non-Cryst Solids 356:1097–1101

    Article  CAS  Google Scholar 

  • Park Y, Noh HJ, Han L, Kim H-S, Kim Y-J, Choi JS, Kim C-K, Kim YS, Cho S (2012) Artemisia capillaris extracts as a green factory for the synthesis of silver nanoparticles with antibacterial activities. J Nanosci Nanotechnol 12:7087–7095

    Article  CAS  Google Scholar 

  • Parvathi VP, Umadevi M, Sasikala R, Parimaladevi R, Ragavendran V, Mayandi J, Sathe G (2020) Novel silver nanoparticles/activated carbon co-doped titania nanoparticles for enhanced antibacterial activity. Mater Lett 258:126775

    Article  Google Scholar 

  • Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E 42:1417–1424

    Article  CAS  Google Scholar 

  • Piccinini G, Bramucci M, Maccari E, Miano A, Amici D, Gianfranceschi GL, Cardellini E (1993) In vitro phosphorylation of proteins tightly bound to DNA by protein kinase NII. Int J Biochem 25(7):1035–1039

    Google Scholar 

  • Pirtarighat S, Ghannadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem 9(1):1–9

    Article  CAS  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2:574–580

    Article  CAS  Google Scholar 

  • Prabu HJ, Johnson I (2015) Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Modern Sci 1(4):237–246

    Article  Google Scholar 

  • Prathna T, Chandrasekaran N, Raichur AM, Mukherjee A (2011a) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B: Biointerfaces 82:152–159

    Article  CAS  Google Scholar 

  • Prathna T, Chandrasekaran N, Raichur AM, Mukherjee A (2011b) Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 377:212–216

    Article  CAS  Google Scholar 

  • Qais FA, Shafiq A, Khan HM, Husain FM, Khan RA, Alenazi B, Alsalme A, Ahmad I (2019) Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic Chem Appl 4649506

    Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    Article  CAS  Google Scholar 

  • Rao ML, Savithramma N (2011) Biological synthesis of silver nanoparticles using Svensonia Hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J Pharm Sci Res 3(3):1117

    Google Scholar 

  • Rao B, Tang R-C (2017) Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Advances in natural sciences: Nanosci Nanotechnol 8(1):015014

    Google Scholar 

  • Reddy NR, Bharagav U, Shankar M, Reddy PM, Reddy KR, Shetti NP, Alonso-Marroquin F, Kumari MM, Aminabhavi TM, Joo SW (2021) Photocatalytic hydrogen production by ternary heterojunction composites of silver nanoparticles doped FCNT-TiO2. J Environ Manage 286:112130

    Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6(6):2295–2350

    Article  CAS  Google Scholar 

  • Roy N, Alam MN, Mondal S, Sk I, Laskar RA, Das S, Mandal D, Begum NA (2012) Exploring Indian Rosewood as a promising biogenic tool for the synthesis of metal nanoparticles with tailor-made morphologies. Process Biochem 47:1371–1380

    Article  CAS  Google Scholar 

  • Roy K, Sarkar C, Ghosh C (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5:953–959

    Article  CAS  Google Scholar 

  • Sarasa J, Roche P, Puig A, Ormad P, MutuberrõÂa M, Ovelleiro J (1993) Determination of thecompounds present in a previously chlorinated wastewater resulting from theproduction of azoic dyes by gc/ms and treatment with ozone. Proceedings of 11th Ozone World Congress

    Google Scholar 

  • Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73:332–338

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Yun Y-S (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresou Technol 101(20):7958–7965

    Article  CAS  Google Scholar 

  • Saxena A, Tripathi R, Singh R (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5:427–432

    Google Scholar 

  • Sheny D, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79:254–262

    Article  CAS  Google Scholar 

  • Singh A, Jain D, Upadhyay M, Khandelwal N, Verma H (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios 5:483–489

    Google Scholar 

  • Singh P, Pandit S, Mokkapati V, Garnæs J, Mijakovic I (2020) A sustainable approach for the green synthesis of silver nanoparticles from Solibacillus isronensis sp. and their application in biofilm inhibition. Molecule 25(12):2783

    Google Scholar 

  • Song JY, Kim BS (2008) Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25(4):808–811

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. science 298(5601):2176–2179

    Google Scholar 

  • Sur UK, Ankamwar B, Karmakar S, Halder A, Das P (2018) Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Mater Today: Proc 5:2321–2329

    Google Scholar 

  • Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J Mater Chem 13(5):1069–1075

    Google Scholar 

  • Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653

    Article  CAS  Google Scholar 

  • Tien H-W, Huang Y-L, Yang S-Y, Wang J-Y, Ma C-CM (2011) The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 49(5):1550–1560

    Article  CAS  Google Scholar 

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna T, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246

    Article  CAS  Google Scholar 

  • Tseng Y-H, Lin C-T (2011) Enhancing enterprise agility by deploying agile drivers, capabilities and providers. Inf Sci 181(17):3693–3708

    Google Scholar 

  • USEPA (1994) Epa Method 1312: Synthetic Precipitation Leaching Procedure. USEPA, Washington DC

    Google Scholar 

  • Valodkar M, Nagar PS, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: a rational approach to antimicrobial applications. Colloids Surf A Physicochem Eng Asp 384:337–344

    Article  CAS  Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120

    Article  CAS  Google Scholar 

  • Vijayakumar M, Priya K, Nancy F, Noorlidah A, Ahmed A (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240

    Article  CAS  Google Scholar 

  • Vinod V, Saravanan P, Sreedhar B, Devi DK, Sashidhar R (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B: Biointerfaces 83:291–298

    Article  CAS  Google Scholar 

  • Vinodhini S, Vithiya BSM, Prasad TAA (2022) Green synthesis of silver nanoparticles by employing the Allium fistulosum, Tabernaemontana divaricate and Basella alba leaf extracts for antimicrobial applications. J King Saud Univ-Sci 34:101939

    Article  Google Scholar 

  • Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, Roszek B, Bisschops J, Gosens I, Van De Meent D (2009) Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138

    Article  CAS  Google Scholar 

  • Yan X, He B, Liu L, Qu G, Shi J, Hu L, Jiang G (2018) Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10:557–564

    Article  CAS  Google Scholar 

  • Yuan Y, Ding J, Xu J, Deng J, Guo J (2010) TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. J Nanosci Nanotechnol 10:4868–4874

    Article  CAS  Google Scholar 

  • Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187:511–520

    Article  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95

    Google Scholar 

  • Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120(24):6024–6036

    Google Scholar 

  • Zhong Y, Meng F, Deng C, Zhong Z (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 15:1955–1969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manviri Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yadav, J., Rani, M., Shanker, U. (2022). Synthesis of Silver Nanoparticles with Environmental Applications. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_116-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics